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Part 1

Classical Mechanics






LECTURE 1

Equations of motion

We assume that the reader is familiar with the basic notions from the the-
ory of smooth — C'°° — manifolds, and recall here the standard notation.
Unless it is stated explicitly otherwise, all maps are assumed to be smooth,
and all functions are assumed to be smooth and real-valued. Local coordinates
q = (¢*,...,q") on a smooth n-dimensional manifold M at point ¢ € M are
Cartesian coordinates on ¢(U) C R™, where (U, ¢) is a coordinate chart on M
centered at ¢ € U. For f : U — R™ we denote (f o o~ 1)(¢',...,q") by f(q),
and we let

of _(of of

stand for the gradient of a function f at point ¢ € R™ with Cartesian coordinates
(¢%,...,q"). We denote by

A* (M) :éAk(M)
k=0

the graded algebra of smooth differential forms on M with respect to the wedge
product, and by d the de Rham differential — a graded derivation of A®*(M) of
degree 1, such that df is a differential of a function f € A°(M) = C>(M). Let
Vect(M) be the Lie algebra of smooth vector fields on M with the Lie bracket
[, ], given by a commutator of vector fields. For X € Vect(M) we denote
by Lx and iy, respectively, the Lie derivative along X and the inner product
with X. The Lie derivative is a degree 0 derivation of A®(M) which commutes
with d and satisfies Lx(f) = X(f) for f € A°(M), and the inner product is
a degree —1 derivation of A®*(M) satisfying ix (f) = 0 and ix(df) = X(f) for
f € A°(M). They satisfy Cartan formulas

(1.1) Lx =ixod+doix =(d+ix)?,

(1.2) ix,y] = Lx oiy —iy o Lx.

For a smooth mapping of manifolds f : M — N we denote by f, : TM — TN
and f* : T*N — T*M, respectively, the induced mappings on tangent and
cotangent bundles. Other notations, including those traditional for classical
mechanics, will be introduced in the main text.
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1.1. Generalized coordinates

Classical mechanics describes systems of finitely many interacting particles.
Position of a system in space is specified by the positions of its particles and
determines a point in some smooth, finite-dimensional manifold M, called a
configuration space of the system. Coordinates on M are called generalized
coordinates of a system, and the dimension n = dim M is called the number of
degrees of freedom.

A state of the system at any instant of time is described by a point ¢ € M
and by a tangent vector v € T, M at this point. The basic principle of classical
mechanics is the Newton-Laplace determinacy principle, which asserts that a
state of the system at a given instant of time completely determines its motion
at all times ¢ (in the future and in the past). The motion is described by a

classical trajectory — a path (¢) in the configuration space M. In generalized
i

coordinates y(t) = (¢'(t),...,q"(t)), and corresponding derivatives ¢’ =

dt

are called generalized velocities. The Newton-Laplace principle is a fundamen-
d2 i

tal experimental fact. It implies that generalized accelerations §* = dtg are

uniquely determined by generalized coordinates ¢° and generalized velocities ¢’,
so that classical trajectories satisfy a system of second order ordinary differential
equations, called equations of motion.

A Lagrangian system on a configuration space M is defined by a smooth,
real-valued function L on T'M x R — the direct product of a tangent bundle
TM of M and the time axis' — called the Lagrangian function (or simply,
Lagrangian).

1.2. The principle of least action

The most general principle governing the motion of Lagrangian systems is
the principle of least action in the configuration space (or Hamilton’s principle),
formulated as follows.

Let

P(M)I3 = {y: [to, t1] = M; v(to) = qo, 7(t1) = a1}

be the space of smooth parametrized paths in M connecting points ¢y and
¢1. The path space P(M) = P(M )g;i; is an infinite-dimensional real Fréchet
manifold, and the tangent space T, P(M) to P(M) at v € P(M) consists of all
smooth vector fields along the path v in M which vanish at the endpoints gy and
q1. A smooth path I' in P(M), passing through v € P(M), is called a variation
with fized ends of the path v(t) in M. A variation I is a family ~.(¢) = I'(¢, €)

of paths in M given by a smooth map

I: [to,tﬂ X [—50760] - M

11t follows from the Newton-Laplace principle that L could depend only on generalized
coordinates and velocities, and on time.
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such that T'(t,0) = ~(t) for t¢ < t < t; and T'(tg,e) = qo,[(t1,6) = ¢ for
—gg < e < ¢gg. The tangent vector

or

= — T,P(M
655:06’}/( )

oy

corresponding to a variation 7. (t) is traditionally called an infinitesimal varia-
tion. Explicitly,
5v(t) = T.(£)(t,0) € Ty M, to <t <t,

g

where % is a tangent vector to the interval [—eg, o] at 0. Finally, a tangential

lift of a path v : [to,t1] — M is the path v’ : [to,t1] — TM defined by +'(t) =
7*(%) € TypyM, to <t < ty, where % is a tangent vector to [to,t1] at ¢t. In
other words, 7/(¢) is the velocity vector of a path (t) at time ¢.

DEFINITION. The action functional S : P(M) — R of a Lagrangian system
(M, L) is defined by

t1
s = [ Lot
to
PRINCIPLE OF LEAST AcTION (Hamilton’s principle). A path v € PM
describes the motion of a Lagrangian system (M, L) between the position gy €
M at time ¢y and the position ¢ € M at time ¢; if and only if it is a critical
point of the action functional S,

d

dE S(’YE):O

e=0

for all variations v (t) of v(¢) with fixed ends.

The critical points of the action functional are called extremals and the
principle of the least action states that a Lagrangian system (M, L) moves along
the extremals®. The extremals are characterized by equations of motion — a
system of second order differential equations in local coordinates on T'M. The
equations of motion have the most elegant form for the following choice of local
coordinates on T M.

DEFINITION. Let (U, ¢) be a coordinate chart on M with local coordinates
q=(q¢',...,q"). Coordinates

(q,v) = (¢*,...,q" v ..., 0")
on a chart TU on TM, where v = (v!,... ,v") are coordinates in the fiber cor-
0 0
responding to the basis —,..., for T, M, are called standard coordinates.
ot dgn q

2 The principle of least action does not state that an extremal connecting points ¢o and
q1 is a minimum of S, nor that such an extremal is unique. It also does not state that any
two points can be connected by an extremal.
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Standard coordinates are Cartesian coordinates on ¢, (TU) C TR™ >~ R"™ x
R™ and have the property that for (¢,v) € TU and f € C*(U),

(1.3) Z = 8f

i=1
et (U, ) and (U, ¢’) be coordinate charts on M with the transition functions

F =(FlL....F) = ¢ oot :pUNU") = ¢(UNU'), and let (g,v) and
(q',v"), respectively, be the standard coordinates on TU and TU’. We have
q' = F(q), and it follows from (1.3) that

OF* "
(1.4) v' = F.(q)v, where F,(q)= -(q)

¢’ ij=1

is a matrix-valued function on (U N U’). In other words, “vertical” coordi-
nates v = (v!,...,v") in the fibers of TM — M transform like components
of a tangent vector on M under the change of coordinates on M. In classical
terminology, v is a contravariant vector.

The tangential lift v/(¢) of a path v(¢) in M in standard coordinates on TU
is (q(t),q(t)) = (¢*(t),...,q"(t),¢*(t),...,4"(t)), where the dot stands for the
time derivative, so that

Following a centuries long tradition®, we will usually denote standard coordi-
nates by

(q’q):(qlﬁ"'7qn7q.17"'7q.n)7

where the dot does not stand for the time derivative. Since we only consider
paths in TM that are tangential lifts of paths in M, there will be no confusion®.

THEOREM 1.1. The equations of motion of a Lagrangian system (M, L) in
standard coordinates on T M are given by the Fuler-Lagrange equations

S0, - 5 (G a0.a0.0) =o.

PROOF. Suppose first that an extremal v(t) lies in a coordinate chart U of
M. Then a simple computation in standard coordinates, using integration by

3Used in all texts on classical mechanics and theoretical physics.
4We reserve the notation (q(t), v(t)) for general paths in TM.
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parts, gives
_d
de
d h
[ Lo ate).n

£s:O to
" /9L .. OL )
5q" + ——84" ) dt
;/tg (8611 T o
N d8L> . " AL .
= ) 5gtdt + — 84"
iz_;/tg (aql dt 0q' ; 9q’

The second sum in the last line vanishes due to the property dq’(tg) = d¢'(t1) =
0, i =1,...,n. The first sum is zero for arbitrary smooth functions §¢° on the
interval [tg, t1] which vanish at the endpoints. This implies that for each term
in the sum the integrand is identically zero,

S(ve)

e=0

ty

to

Ceta0.d0.0 - 5 (Ge@®.d0.0) =0 i=1on

Since the restriction of an extremal of the action functional S to a coordinate
chart on M is again an extremal, each extremal in standard coordinates on T'M
satisfies Euler-Lagrange equations. O

REMARK. In calculus of variations, the directional derivative of a functional
S with respect to a tangent vector V' € T, P(M) — the Gato derivative — is
defined by

d
ovS = —

de 5(76)3

e=0

where 7, is a path in P(M) with a tangent vector V at 79 = 7. The result
of the above computation (when + lies in a coordinate chart U C M) can be
written as

oy S =

P = t , 3 (t ’t V() dt
to j—1 (an dt d¢ (Q( ) q( ) ' ( )

(1.5) = /t (gﬁ - ;tgg) (q(1),q(t), t)v(t)dt.

N
Here V(t) = Z vz(t)y is a vector field along the path « in M. Formula (1.5)
, q*
=1
is called the formula for the first variation of the action with fixed ends. The

principle of least action is a statement that oy S(y) =0 for all V € T, P(M).

REMARK. It is also convenient to consider a space P(M) = {v : [to, t1] —

i

M} of all smooth parametrized paths in M. The tangent space T,P(M) to
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P/(J\7) at v € P/(Z\Y) is the space of all smooth vector fields along the path v in
M (no condition at the endpoints). The computation in the proof of Theorem
1.1 yields the following formula for the first variation of the action with free
ends:

/9L d OL aL

ty

to

In expanded form, the Euler-Lagrange equations are given by the following
system of second order ordinary differential equations:

oL . d oL

fqi(qvq’t) 94 5 (a,4,t)
- . O%L , 92L

) . -7 .
Z<aqlaj qq’ )q +8q-iaqj(qaq’t)q>+aZat(q,q, ) 1 1,...,71.

Jj=1

In order for this system to be solvable for the highest derivatives for all initial
conditions in TU, the symmetric n x n matrix

0%L "
L(qqu ) {8q18q7 (q7qa )}i,j_l
should be invertible on TU.

DEFINITION. A Lagrangian system (M, L) is called non-degenerate if for
every coordinate chart U on M the matrix Hp(q,q,t) is invertible on TU.
Otherwise Lagrangian system is called singular.

REMARK. Note that the n x n matrix Hy, is a Hessian of the Lagrangian
function L for vertical directions on T'M. Under the change of standard coor-
dinates ¢ = F(q) and ¢’ = F.(q)q it has the transformation law

HL(qa q7t) = F*(q)THL(q/7 qlvt)F*(q)7

where Fi.(q)7 is the transposed matrix, so that the condition det Hy, # 0 does
not depend on the choice of standard coordinates.

Inverting the matrix Hy, we can write Euler-Lagrange equations for a non-
degenerate Lagrangian in the form

(1.7) i' = F(q,q,t), i=1,...,n.

1.3. Newtonian spacetime

To describe a mechanical phenomena it is necessary to choose a frame of
reference. The properties of the spacetime where the motion takes place depend
on this choice. The spacetime is characterized by the following postulates®.

E’Strictly speaking, these postulates are valid only in the non-relativistic limit of special
relativity, when the speed of light in the vacuum is assumed to be infinite.
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NEWTONIAN SPACE-TIME. The space is a three-dimensional affine Eucli-
dean space E3. A choice of the origin 0 € E® — a, reference point — establishes
the isomorphism E3 ~ R3, where the vector space R? carries the Euclidean inner
product and has a fixed orientation. The time is one-dimensional — a time axis
R — and the spacetime is a direct product E? x R. Points in the spacetime are
called events. Two events (r,t) and (v/,¢') are called simultaneous, if t = t'.
The distance can be defined only for simultaneous events and is the Euclidean
distance |r — 7’|.

An inertial reference frame is a coordinate system with respect to the origin
0 € E3, initial time ¢y, and an orthonormal basis in R3. In an inertial frame the
space is homogeneous and isotropic and the time is homogeneous. The laws of
motion are invariant with respect to the transformations

r—g-r+mrg, t—1t+1to,

where 7,79 € R3 and g € O(3) is an orthogonal linear transformation in R3.
The time in classical mechanics is absolute.

The Galilean group G is a group of all affine transformations of E? xR, which
preserve time intervals, and which for every ¢ € R are isometries in E*. Every
Galilean transformation is a composition of rotation, spacetime translation, and
a special Galilean transformation

(1.8) r—r+uvt, t—t,

where v € R%. Any two inertial frames are related by a Galilean transformation.

The homogeneous Galilean group Gy consists of rotations and special Galilean
transformations (1.8). As a Lie group, Gy is isomorphic to the Euclidean Lie
group F(3) — a semi-direct product R? x O(3). Explicitly,

Go—{(g ‘1’> :g€0(3), veR3},
()= D)=

GALILEO’S RELATIVITY PRINCIPLE. The laws of motion are invariant with
respect to the Galilean group.

so that

These postulates impose restrictions on Lagrangians of mechanical systems.
In particular, Lagrangian L of a closed system® does not explicitly depend on
time.

1.4. Examples of Lagrangian systems

Physical systems are described by special Lagrangians, in agreement with
the experimental facts about the motion of material bodies.

6A system is called closed if its particles do not interact with the outside material bodies.
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ExXAMPLE 1.1 (Free particle). The configuration space for a free particle
is M = R3, and it can be deduced from Galileo’s relativity principle that the
Lagrangian for a free particle is

L= imi’.

Here m > 07 is the mass of a particle and 72 = |#*|? is the length square of the
velocity vector 7 € T,.R3 ~ R3. Indeed, under the Galilean transformation (1.8)

d
im(f +v)? = L+ —(mrv + $v°t),

1.9 L=1msp? L' =L =
(1.9) mre — p

2

so that Lagrangians L and L’ have the same equations of motion (cf. Problem
1.2). Specifically, Euler-Lagrange equations give Newton’s law of inertia,

7 =0.

ExXAMPLE 1.2 (Interacting particles). A closed system of N interacting par-
ticles in R? with masses mq,..., my is described by a configuration space

M=R¥»N=R}x...xR?
N———
N

with a position vector » = (71,...,7x), where r, € R3 is a position vector of
the a-th particle, a = 1,..., N. It is found that the Lagrangian is given by

N
L= imgil-V(r)=T-V,
a=1
where

Mot

a=1

N|—=

is called kinetic energy of a system and V(r) is potential energy. The Euler-
Lagrange equations give Newton’s equations

MaTq = La,
where 5V
F,=—
“ or,
is a force on the a-th particle, a = 1,...,N. Forces of this form are called

conservative. Thus the interaction of particles is through the action of potential

forces, and is an instantaneous action at a distance®.

7Otherwise the action functional is not bounded from below.

8This means a phenomenon in which a change in intrinsic properties of one system induces
an instantaneous change in the intrinsic properties of a distant system without a process that
carries this influence contiguously in space and time.
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It follows from homogeneity of space that potential energy V(r) of a closed
system of N interacting particles with conservative forces depends only on rel-
ative positions of the particles, i.e., V(ri +¢,...,7ny +¢) = V(ry,...,ry) for
all ¢ € R3, which leads to the equation

a=1

In particular, for a closed system of two particles F; + F» = 0, which is the
equality of action and reaction forces, also called Newton’s third law.

The potential energy of a closed system with only pair-wise interaction be-
tween the particles has the form

Vir) = Z Vap(ra — 7).

1<a<b<N

It follows from the isotropy of space that V (r) depends only on relative distances
between the particles, so that the Lagrangian of a closed system of N particles
with pair-wise interaction has the form

N
L:Z%ma'fﬁ - Z Vab("r‘a _'f'b|)-

a=1 1<a<b<N

ExXAMPLE 1.3 (Universal gravitation). According to Newton’s law of gravi-
tation, the potential energy of the gravitational force between two particles with

masses m, and my is

mam
Vire—my) = —Gaib,
7o — rbl

where G is the gravitational constant. The configuration space of N particles
with gravitational interaction is

M={(ry,...,rn) €R?¥N 19, £ py fora#b,a,b=1,...,N}.

EXAMPLE 1.4 (Small oscillations). Consider a particle of mass m with n
degrees of freedom moving in a potential field V' (q), and suppose that potential
energy V has a minimum at ¢ = 0. Expanding V(q) in Taylor series around
0 and keeping only quadratic terms, one obtains a Lagrangian system which
describes small oscillations from equilibrium. Explicitly,

L = 3mg* - Vo(q),

where Vj is a positive-definite quadratic form on R™ given by

" 9%V p
Vo(g) = 5 Z W(O)q q.
ij=1
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Since every quadratic form can be diagonalized by an orthogonal transformation,
we can assume from the very beginning that coordinates q = (¢*,...,q") are
chosen so that V5(q) is diagonal and

n

(1.10) L=1m(¢*-> wi(d)?),
=1

where w1q,...,w, > 0. Such coordinates q are called normal coordinates. In
normal coordinates Euler-Lagrange equations take the form

G +wid =0, i=1,...,n,

and describe n decoupled (i.e., non-interacting) harmonic oscillators with fre-
quencies wi, . ..,wWn.

ExXAMPLE 1.5 (Free particle on a Riemannian manifold). Let (M,ds?) be
a Riemannian manifold with the Riemannian metric ds2. In local coordinates
2t ... 2" on M,
ds® = g, (v)dztdx"”,

where we are using summation over repeated indices. The Lagrangian of a free
particle on M is

L(v) = 3(v,v) = %H’UHZ, veTM,
where (, ) stands for the inner product in fibers of T M, given by the Riemannian
metric. The corresponding functional

tl tl
S(y) =1 / I (6)|2dt = 1 / Gy ()27
to tO

is called the action functional in Riemannian geometry. The Euler-Lagrange
equations are
8g 1 89 by
o BV X T "
G+ gz " T 2 g
and after multiplying by the inverse metric tensor g
they take the form

ZHi?,

7Y and summation over v

#4190 =0, o=1,...,n,

where

e — Ego)\ agl”\ agv}\ i agﬂu
2 Az Oz Oz
are Christoffel’s symbols. The Euler-Lagrange equations of a free particle mov-
ing on a Riemannian manifold are geodesic equations.
Let V be the Levi-Civita connection — the metric connection in the tangent

bundle TM — and let V¢ be a covariant derivative with respect to the vector
field € € Vect(M). Explicitly,

(Ven = (G 4T )€ where € =€4(a) =) oo



1.4. EXAMPLES OF LAGRANGIAN SYSTEMS 13

For a path v(t) = (2#(t)) denote by V5 a covariant derivative along ~,

i) = O rn it (n) @), where 5= (1)

dt Ok

is a vector field along . Formula (1.5) can now be written in an invariant form

ty
55 = - [ (Vi o,

to

which is known as the formula for the first variation of the action in Riemannian
geometry.

PROBLEM 1.1. Show that the action functional is given by the evaluation of the
1-form Ldt on TM x R over the 1-chain 4 on TM X R,

s() = [ Lat

5

where 7 = {(v/(t),t);to <t < t1} and Ldt (w,c2) = cL(q,v), w € T(g,0)TM, c € R.

PROBLEM 1.2. Let f € C*°(M). Show that Lagrangian systems (M, L) and
(M, L+ df) (where df is a fibre-wise linear function on T'M') have the same equations
of motion. In general, the Lagrangian is defined up to an addition of a total time
derivative of a function of coordinates and time.

PROBLEM 1.3. Give examples of Lagrangian systems such that an extremal con-
necting two given points (i) is not a local minimum; (ii) is not unique; (iii) does not
exist.

PROBLEM 1.4. For v an extremal of the action functional S, the second variation
of S is defined by
82
851 (982

where ¢, e, is a smooth two-parameter family of paths in M such that the paths ¢, 0
and 7o,e, in P(M) at the point yo0,0 = v € P(M) have tangent vectors V1 and Va,
respectively. For a Lagrangian system (M, L) find the second variation of S and verify
that for given V1 and V4 it does not depend on the choice of 7, e, .

Sy, S =

S(Yer,e2)s

g1=€9=0

PROBLEM 1.5. Prove that the second variation of the action functional in Rie-
mannian geometry is given by

t1
528 = / (T (817), 627)dt.
to

Here 617,02y € TyPM, J = —Vg-/ — R(#, )% is the Jacobi operator, and R is a
curvature operator — a fibre-wise linear mapping R : TM ® TM — End(T'M) of
vector bundles, defined by R(§,n) = V,Ve — VeV + Ve : TM — TM, where
&,m € Vect(M).






LECTURE 2

Integrals of motion and Noether’s theorem

To describe the motion of a mechanical system one needs to solve the Euler-
Lagrange equations — a system of second order ordinary differential equations
for the generalized coordinates. This could be a very difficult problem. There-
fore of particular interest are those functions of generalized coordinates and
velocities, which remain constant during the motion.

DEFINITION. A smooth function I : TM — R is called an integral of motion
(first integral, or conservation law) for a Lagrangian system (M, L) if

d

S0/ (1) =0

for all extremals « of the action functional.

2.1. Conservation of energy

DEFINITION. The energy of a Lagrangian system (M, L) is a function E on
TM x R, defined in standard coordinates on T'M by

n

- OL
E(q.4.)=Y ¢+
=1 aq

(q7 qat) - L(q7 Ija t)

L
LEMMA 2.1. The energy E = q g— — L is a well-defined function on T M xR.
q
PROOF. Let (U, ) and (U’,¢’) be coordinate charts on M with the tran-
sition functions F = (F!,...,F") = ¢’ oo™l : oUNU') — ¢ (UNU").
Corresponding standard coordinates (q, ¢) and (q’, ¢’) are related by q' = F(q)
and ¢’ = F.(q)q (see formula (1.3) in Lecture 1). We have

dq' = F,(q)dq and dq' = G(q,q)dq+ F.(q)dqg,

where

15
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so that
oL oL oL
dL = —dq' + ——dq' + —dt
ag " Tag 1 T o
oL oL oL oL
(aq' (q)+aq, (g q)> 9+ 5 (@)dg + 5,
oL oL oL
= —d —dq + —dt.
2“1 9™ B
Thus under a change of coordinates
oL oL oL oL
—— F, - = d ¢ = =q¢——,
oq (q) 9g M 955 =dg,
so that F is a well-defined function on T'M. O
COROLLARY 2.1. Under a change of local coordinates on M, components of
a vector 8—L( ], t) = 8—L a—L transform like components of a 1-form
6q~ q’qV - 8q-1""78q~n p
L
on M. In classical terminology, a—q s a covariant vector.

Let 01, be a 1-form on TM, defined in standard coordinates associated with
a coordinate chart U C M by
0L

" AL
~dg" = —dq.
Zoi ™ " 9™

(2.1) oy, =

It follows from Corollary 2.1 that 6y, is a well-defined 1-form on T M.

ProOPOSITION 2.1 (Conservation of energy). The energy of a closed system
s an integral of motion.

PROOF. For an extremal v put E(t) = E(7/(t)). We have, according to the
Euler-Lagrange equations,
dE _d 0L\ OL. OL. 0L 0L
at ~ dat\9q) 1" 8¢9 aq? 9¢? bt

_(d oLy oLy, or_ oL
“\at\og) aq)? ot T ot
. oL .
Since for a closed system — = 0, the energy is conserved. O

ot

Conservation of energy for a closed mechanical system is a fundamental law
of physics, which follows from the homogeneity of time. For a general closed
system of IV interacting particles considered in Example 1.2,

N N
E=Y meii—L=Y_ fma2+V(r).
a=1 a=1

In other words, the total energy £ =T + V is a sum of the kinetic energy and
the potential energy.
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2.2. Noether theorem

DEFINITION. A Lagrangian L : TM — R is invariant with respect to the
diffeomorphism g : M — M if L(g.(v)) = L(v) for all v € TM. The diffeomor-
phism g is called a symmetry of a closed Lagrangian system (M, L). A Lie group
G is the symmetry group of (M, L) (group of continuous symmetries), if there is
a left G-action on M such that for every g € G the mapping M > x — g-z € M
is a symmetry.

Continuous symmetries give rise to conservation laws.

THEOREM 2.2 (Noether). Suppose that a Lagrangian L : TM — R is in-
variant under a one-parameter group {gs}ser of diffeomorphisms of M. Then
the Lagrangian system (M, L) admits an integral of motion I, given in standard
coordinates on TM by

) 8L
s=0 Bq

8
where X = Za 0 is the vector field on M associated with the flow gs.
q’L

i=1
The integral of motion I is called the Noether integral.

e =Y %4 (dgi(q)

- 4,9
p aq* ds

ProOF. It follows from Corollary 2.1 that I is a well-defined function on
TM. Now differentiating L((gs)«(7'(t))) = L(7/(¢)) with respect to s at s = 0
and using the Euler-Lagrange equations, we get

0= 8L +87La,l_i 87[/ a+67Ld7a—i aia
g " 9¢% " at \aq dg dt dt\oq )’

where a(t) = (a*(y(1)),...,a"(v(t))). O

REMARK. A vector field X on M is called an infinitesimal symmetry, if the
corresponding “time s” local flow g5 of X (defined for each s € R on some
Us C M as a diffeomorphism g, : Us — U_;) is a symmetry: Lo (gs). = L on
U,. Every vector field X on M lifts to a vector field X’ on T'M, defined by a
local flow on T'M , induced from the corresponding local flow on M. In standard
coordinates on T M,

X = Za 8 =

and the corresponding local flow on M is given by

dqi i
as ¢ (a),

and induces the local flow on T M,

z;jaqﬂ i=1,...,n.
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Thus
SN 0 " da 0
I _ } : i § : 23
and for every path v in M,
oL oL
!/ / _ - -
dL(X")(®'(t)) = 8qa + 4 a.

It is easy to verify that X is an infinitesimal symmetry if and only if dL(X') =0
oL
on TM, and I(q,q) = Fa is an integral of motion.
q

REMARK. Using the 1-form 6j, the Noether integral I in Theorem 2.2 can
be written as

(2.3) I=0,(X").

REMARK. Noether’s theorem generalizes to time-dependent Lagrangians L :
TM xR — R. Namely, on the extended configuration space M7 = M x R define
a time-independent Lagrangian L; by

Ll(q7 T7 q.’ 7.-) = L <q7 q’7-> 7.-7
T

where (g, 7) are local coordinates on M; and (q, 7, ¢, 7) are standard coordinates
on T'M;. The Noether integral I; for a closed system (M7, L) defines an integral
of motion I for a system (M, L) by the formula

I(qaqvt) = Il(qvtaq.7 1)

When the Lagrangian L does not depend on time, L; is invariant with respect

to the one-parameter group of translations 7 — 7 + s, and the Noether integral
0Ly

I = 1
YT o7
Noether’s theorem can be generalized further as follows.

gives I = —F.

PROPOSITION 2.2. Suppose that for a given Lagrangian L : TM — R there
exist a vector field X on M and a function K on T M, such that for every path
v in M,

Then
"\, 0L, . .
I=> (95709~ K(g.9)
=1

is an integral of motion for the Lagrangian system (M, L).
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Proor. Using Euler-Lagrange equations, we have along the extremal ~,

d (8L > 0L oL, dK
= = O
dt

0q") " 9q" T 9q" " ar
For a closed, non-degenerate Lagrangian system (M, L) this result can be
generalized further by allowing coefficients a’(q) of the vector field X to depend

also on g. Namely, rewrite Euler-Lagrange equations as in (1.7), and consider
a vector field X on T'M, given in the standard coordinates by

Z ( —(q,q9) + F'(q,q) gg; (q74)> a?;r

i,7=1

(2.4)

PROPOSITION 2.3. Suppose that for a closed, non-degenerate Lagrangian L
there exist a vector field X on TM of the form (2.4), and a function K on TM,
such that for every path v in M,

(2.5) dL(X)(7/(t)) = - K(¥'(t))-

Then .
I=) dla )ge(qq) K(q.q)

18 an integral of motion.
PROOF. Along the extremal v(t),

al 9L  OL. dK - d
= et Gaa - G =X W) - FEG@ =0 D

2.3. Examples of conservation laws

EXAMPLE 2.1 (Conservation of momentum). Let M =V be a vector space,
and suppose that a Lagrangian L is invariant with respect to a one-parameter
group gs(q) = q + sv, v € V. According to Noether’s theorem,

is an integral of motion. Now let (M, L) be closed Lagrangian system of N
interacting particles, considered in Example 1.2. We have M = V = R3V and

the Lagrangian L is invariant under a simultaneous translation of coordinates

rq = (rl,r2 r3) of all partlcleb by the same vector ¢ € R3. Thusv = (c,...,c) €

a’'ar'a

R3N | and for every ¢ = (¢!, c?,¢3) € R3,

N
1 0L 5 OL 3 0L 1 9 3
IZ;( 81+ 8a—i—c87_02>:cPl—&—cP2—|—cP3
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is an integral of motion. The integrals of motion P, P, P3 define the vector

N
oL
P = R3
; i ©

(or rather a vector in a dual space to R?), called the momentum of a system.

Explicitly,
N
P = Z ma";av
a=1

so that the total momentum of a closed system is a sum of momenta of individ-
ual particles. Conservation of momentum is a fundamental physical law which
reflects the homogeneity of space.

Traditionally, p;, = —— are called generalized momenta corresponding to gen-

¢

eralized coordinates ¢¢, and F; = are called generalized forces. In these

aq'

notation, the Euler-Lagrange equations have the same form
p=F

as Newton’s equations in Cartesian coordinates. Conservation of momentum
implies Newton’s third law.

EXAMPLE 2.2 (Conservation of angular momentum). Let M = V be a vector
space with Euclidean inner product. Let G = SO(V') be the connected Lie group
of automorphisms of V' preserving the inner product, and let g = so(V') be the
Lie algebra of G. Suppose that a Lagrangian L is invariant with respect to the
action of a one-parameter subgroup gs(q) = e** - ¢ of G on V, where x € g and
e” is the exponential map. According to Noether’s theorem,

- ; OL
I:Z(x-q) 37q1

=1

is an integral of motion. Now let (M, L) be a closed Lagrangian system of N
interacting particles, considered in Example 1.2. We have M = V = R3V,
and the Lagrangian L is invariant under a simultaneous rotation of coordinates
r, of all particles by the same orthogonal transformation in R3. Thus z =
(U, ...,u) €50(3) @ --- ®s0(3), and for every u € s0(3),

N
al oL oL oL
_ 1 2 3
I-?}l((wra) 6—7%—1—(15-7'&) a—faz—k(wra) 87“2>
is an integral of motion. Let u = u' X;+u?Xo+u3 X3, where X; = (§ ((13721) , X =

001 0-10Y . .. .
(_01 0 8) , X3 = ((1) 9 8) is the basis in s0(3) ~ R3 corresponding to the rota-

tions about the vectors ey, es, e3 of the standard orthonormal basis in R3. Since
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U-Tq =u X Ty, where u = (u!,u? u3), we have

I =u' My + > My + u®Ms,

where M = (M7, Ma, M3) € R3 (or rather a vector in a dual space to s0(3)) is

given by
al oL
M = a X —.
aZ:1 " 07

The vector M is called the angular momentum of a system. Explicitly,

N
M = Zra X MgTq,

a=1

so that the total angular momentum of a closed system is a sum of angular
momenta of individual particles. Conservation of angular momentum is a fun-
damental physical law which reflects the isotropy of space.

EXAMPLE 2.3 (The center of mass). Let (M, L) be a closed Lagrangian
system of N interacting particles, considered in Example 1.2. Under a simul-
taneous Galilean transformation (1.8) of all coordinates, r, — 7, + vt, and
corresponding transformation of velocities 7, — 7, + v, we have

d
L—L=L+— Zma(rav + 1v%t).

Therefore for infinitesimal Galilean transformation — the time-dependent vector

field N
~ 0 0
X =
* (tv or, + ”ara)

a=

equation (2.5) holds, where the functions K is given by

N
K= E MaTaV.
a=1

According to Proposition 2.3, the vector
N
I=tP — Z MaTa
a=1

is an integral of motion, I = 0 on the solutions of the Euler-Lagrange equations.
This is equivalent to the statement that the center of mass of the system

N N
R:M;mara, where M:Zma

a=1

is the total mass, moves with the constant velocity V = P/M.
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PROBLEM 2.1. Prove that a Lagrangian system (M, L) is non-degenerate if and
only if the 2-form df; on T'M is non-degenerate.

PROBLEM 2.2 (Second tangent bundle). Let m : TM — M be the canonical
projection and let Ty (T'M) be a vertical tangent bundle of T M along the fibers of 7 —
the kernel of the bundle mapping 7. : T(T'M) — T M. Prove that there is a natural
bundle isomorphism ¢ : #*(T'M) ~ T, (T'M), where n* (T M) — T M is the pullback of
the tangent bundle T'M of M under the map 7.

PROBLEM 2.3 (Invariant definition of the 1-form 6r). Show that 6r(v) =
dL((i o ms)v), where v € T(TM).

PROBLEM 2.4. Prove that if a vector field X on M is an infinitesimal symmetry
of the Lagrangian system (M, L), then Lx/(0r) = 0, where Lx/ stands for the Lie
derivative.

PROBLEM 2.5. Prove that a path y(t) in M is a trajectory for the Lagrangian
system (M, L) if and only if

i;w(t) (d@L) + dEL(’}/(t)) = 0,

where 4/(t) is the velocity vector of the path +/(¢) in T M.



LECTURE 3

Integration of equations of motion

A complete general solution can be obtained for three very important exam-
ples: a motion on the real line, a system of two interacting particles, including
the Kepler problem, and the rotation of a rigid body.

3.1. One-dimensional motion

The motion of systems with one degree of freedom is called one-dimensional.
In terms of a Cartesian coordinate x on M = R, the Lagrangian takes the form

L=1mi* V().

The conservation of energy

E= %mch + V(z),

allows to solve the equation of motion in a closed form by separation of variables.
We have

dzx 2
at = E(E = V(z)),

so that
L Im / dx
2) JVE-V(z)

The inverse function z(t) is a general solution of Newton’s equation
av
dx’
with two arbitrary constants, the energy E and the constant of integration.

Since kinetic energy is non-negative, for a given value of E the actual motion
takes place in the region of R where V' (2) < E. The points where V(z) = E are
called turning points. The motion which is confined between two turning points

is called finite. The finite motion is periodic — the particle oscillates between
the turning points x; and xo with the period

(F/\/ﬁ

If the region V(z) < E is unbounded, then the motion is called infinite and the
particle eventually goes to infinity. The regions where V(z) > E are forbidden.

mi = —

23
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AV

FIGURE 1

Thus on Fig. 1 the motion between points x; and x5 is periodic, and in the
region x3 < x the motion is infinite; all other regions there are forbidden.

On the phase plane with coordinates (z,y) Newton’s equation reduces to the
first order system

Trajectories correspond to the phase curves (z(t),y(t)), which lie on the level
sets
Y2

o +V(z)=F
of the energy function. The points (z, 0), where xg is a critical point of the po-
tential energy V' (z), correspond to the equilibrium solutions. The local minima
correspond to the stable solutions and local maxima correspond to the unstable
solutions. For the values of F which do not correspond to the equilibrium solu-
tions the level sets are smooth curves. These curves are closed if the motion is
finite.

The simplest non-trivial one-dimensional system, besides the free particle, is

1

the harmonic oscillator with V(z) = $kz* (k > 0), considered in Example 1.4.

The general solution of the equation of motion is

x(t) = Acos(wt + «),

[k
where A is the amplitude, w = \/ — is the frequency, and « is the phase of a
m

2
simple harmonic motion with the period T = T The energy is B = %mwQA2

w
and the motion is finite with the same period T for £ > 0.
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3.2. Two-body problem

The motion of a system of two interacting particles — the two-body problem
— can also be solved completely. Namely, in this case (see Example 1.2) M = R

and . .
mir moT
12 L +%—V(|rlfr2\).

Introducing on R® new coordinates

I =

r—r —1y and R— TATLTM2T2
mi + mo
we get ]
L=1imR*+ L —V(|r)),

mims

where m = mj + mo is the total mass and p = is the reduced mass

mi + Mo
of a two-body system. The Lagrangian L depends only on the velocity R of
the center of mass and not on its position R. A generalized coordinate with
this property is called cyclic. It follows from the Euler-Lagrange equations that
generalized momentum corresponding to the cyclic coordinate is conserved. In
our case it is a total momentum of the system,

OR

so that the center of mass R moves uniformly. Thus in the reference frame
R = 0 the two-body problem reduces to the problem of a single particle of mass
p in the external central field V'(|r|).

It follows from the conservation of angular momentum M = ur X 7 that
during the motion position vector r lies in the plane P orthogonal to M in R3.
Choosing the z-axis along M, the plane P becomes the zy-plane and in polar
coordinates

mR,

T =7Ccosp, y=rsiny

the Lagrangian takes the form

L= %,u(f‘Q + 2% =V (r).

The coordinate ¢ is cyclic and its generalized momentum pr?¢p coincides with
|[M]| if ¢ > 0 and with —|M| if ¢ < 0. Denoting this quantity by M, we get
the equation

(3.1) prp = M,

which is equivalent to Kepler’s second law'. Using (3.1) we get for the total
energy

2

(3:2) B =gl + 120 + V() = gui® £ V() + 3 5.

11t is the statement that sectorial velocity of a particle in a central field is constant.
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Thus the radial motion reduces to a one-dimensional motion on the half-line
r > 0 with the effective potential energy

M2
Ve (1) =V (r) + 22’

where the second term is called the centrifugal energy. As in the previous
section, the solution is given by

(3.3)

It follows from (3.1) that the angle ¢ is a monotonic function of ¢, given by
another quadrature

(3.4 o= [
Vi ] 2 JF V()
yielding an equation of the trajectory in polar coordinates.

The set Vog(r) < E is a union of annuli 0 < 7y, <7 < ripge < 00, and the
motion is finite if 0 < 7 < 7 < Fpge < 00. Though for a finite motion ()
oscillates between 7,,;, and r,4., corresponding trajectories are not necessarily
closed. The necessary and sufficient condition for a finite motion to have a
closed trajectory is that the angle

M Tmax dr

N Ve Jo, 12 VE - Ve (1)

m
is commensurable with 27, i.e., Ap = 2r— for some m,n € Z. If the angle

Ay

n
Ay is not commensurable with 27, the orbit is everywhere dense in the annulus
Tmin <r< Tmaz- If

lim Veg(r) = lim V(r) =V < o0,

T—00 T—00

the motion is infinite for £ > V — the particle goes to co with finite velocity

A very important special case is when

3.3. Kepler problem

o
Vir)=——

(r)=-5

It describes Newton’s gravitational attraction (« > 0) and Coulomb electrostatic
interaction (either attractive or repulsive). First consider the case when a > 0
— Kepler’s problem. The effective potential energy is

a M?

Vveff('f”) = —; + 2[[”12
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Vest
A

To

‘/0 N |
FIGURE 2

and has the global minimum
= m
ST VE

M2
at 1o = — (see Fig. 2). The motion is infinite for £ > 0 and is finite for
e!

Vo < E < 0. Since

20(E = Ver(r)) =25 ~ Vo) = M (1= )

elementary integration in (3.4) gives

—1 T To
p=cos  ———=+C
2u(E Vo)
which allows to determine the explicit form of trajectories.
Namely, choosing a constant of integration C' = 0 and introducing the nota-
tion
E

- d e=4/1-=
p o an & ‘/b’

we get the equation of the orbit (trajectory)

(3.5) P —14ecos ®.
r
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This is the equation of a conic section with one focus at the origin. Quantity
2p is called the latus rectum of the orbit, and e is called the eccentricity. The
choice C = 0 is such that the point with ¢ = 0 is the point nearest to the origin
(called the perihelion). When Vy < E < 0, the eccentricity e < 1 so that the
orbit is the ellipse? with the major and minor semi-axes

e P o p M

1—e? 2| Vi—e2  \/2u|E

_r
1+e

(3.6)

Correspondingly, 7min = sy Tmaz = %, and the period T of elliptic orbit
—e

[ 1
T = .
o 2B

The last formula is Kepler’s third law. When E > 0, the eccentricity e > 1
and the motion is infinite — the orbit is a hyperbola with the origin as internal
focus. When E = 0, the eccentricity e = 1 — the particle starts from rest at co
and the orbit is a parabola.

For the repulsive case a < 0 the effective potential energy Vg (r) is always
positive and decreases monotonically from oo to 0. The motion is always infinite
and the trajectories are hyperbolas (parabola if E = 0)

b_ —1+ecosyp
r

is given by

with
M? 2EM?
p=— and e=4[1+ 5
L po
Kepler’s problem is very special: for every o € R the Lagrangian system on
R3 with

(3.7) L=1u?+ %

has three extra integrals of motion Wy, Wy, W3 in addition to the components
of the angular momentum M. The corresponding vector W = (Wy, Wy, W3),
called the Laplace-Runge-Lenz vector, is given by

ar
(3.8) W=rxM-—.
r
. . . . ar .
Indeed, using equations of motion u#* = —— and conservation of the angular
r

momentum M = pr X r, we get
W:M,-;X(,ﬁx,;)_guw
r r
. . .oar  ofr-r)r
Z(NT-T)T—(MT-T)T—T—F(i)

=0.

r3

2The statement that planets have elliptic orbits with a focus at the Sun is Kepler’s first
law.
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Using p(7 x M) -r = M? and the identity (a X b)?> = a?b? — (a - b)?, we get

2M?FE
(3.9) W?=a?+
where
p_P
2u T

is the energy corresponding to the Lagrangian (3.7). The fact that all orbits are
conic sections follows from this extra symmetry of the Kepler problem.

3.4. The motion of a rigid body

The configuration space of a rigid body in R? with a fixed point is a Lie
group G = SO(3) of orientation preserving orthogonal linear transformations
in R3. Every left-invariant Riemannian metric ( , ) on G defines a Lagrangian
L:TG — R by

L(v) = $(v,v), veTG.

According to Example 1.5, equations of motion of a rigid body are geodesic
equations on G with respect to the Riemannian metric { , ). Let g = s0(3) be
the Lie algebra of G. A velocity vector § € TyG determines the angular velocity
of the body Q = (Ly-1)+g € g, where Ly : G — G are left translations on G. In
terms of angular velocity, the Lagrangian takes the form

(3.10) L =%(Q,9Q).,

where ( , )¢ is an inner product on g = T.G given by the Riemannian metric

()
Let

B(z,y) = f% Tr xy

be the Killing form on the Lie algebra g = s0(3) — the Lie algebra of 3 x 3
skew-symmetric matrices. It determines ad g-invariant inner product on g,

B([.’L‘,Z],y) + B(m’ [y,z]) =0

for all z,y, z € g. Thus we have (Q2,Q), = B(A-Q, Q) for some symmetric linear
operator A : g — g, which is positive-definite with respect to the Killing form.
Such linear operator A is called the inertia tensor of the body, and Lagrangian
(3.10) takes the form

(3.11) L=

Now we are ready to derive equations of motion for Lagrangian (3.11). Sim-
ilar to Sect. 1.2, for a path g : [tg, t1] — G, consider the family

g(t,e) = g(t) exp{eu(t)}, where w:[to,t1] =g, wu(to)=wu(t1)=0,
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and exp : g — G is the exponential map. We have

6!7 t, 3
¢ e=0

= (Lg)su(t) € TypyG  and  u(t) = (Ly)-1):09(t) € 9.

The corresponding angular velocity Q(t,e) = g71(¢,€)g(t,¢) € g takes the form
Q(t,e) = Ady, »Qt) +eu(t), where ho(t) =exp{—cu(t)}, Q(t)=Q(t,0),

and Ad, stands for the adjoint action of G on g. Thus for the infinitesimal
variation

o0N(t,e)
00(t) =
(t) 9 |, °
we readily obtain
(3.12) 00 =4+ [Q,ul.

As in Sect. 1.2 in Lecture 1, consider the action functional
I
Ste.9) = [ B2,
to
Using the symmetry of the operator A we obtain

5S = Q/tl (B(A - 6Q(t), (1)) + B(A - Q(t), 50(1))) dt = /tl B(AQ(L), 60(1))dt,

and using (3.12), ad g-invariance of the Killing form and integration by parts,
we get

ty

5S= [ B(A-Q),u(t) + [Qt), u(t)])dt
= /t1 B(—A-Q(t) + [A-Q(t), Q)] u(t))dt.

Since the Killing form is non-degenerate and w(t) is an arbitrary smooth
g-valued function with u(t1) = u(t2) = 0, from 45 = 0 we obtain the following
equations of motion

(3.13) A-Q=[A-Q,9)].

REMARK. Our derivation of equations of motion (3.13) is valid for any com-
pact Lie group G and are called Fuler equations. In general, for Lagrangian
(3.10) we obtain the following equations of motion,

A-Q=adhH(A-Q),

where adg, is the adjoint of the operator adg on g with respect to the inner
product { , ).. These equations are called Fuler-Arnold equations for the
geodesics of a left-invariant Riemannian metric on a Lie group G, finite or
infinite-dimensional.
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Returning to the case G = SO(3), the principal azes of inertia of the body
are orthonormal eigenvectors eq, eo, e3 of A; corresponding eigenvalues I, I, I3
are called the principal moments of inertia. Choosing the principal axes of
inertia as a basis in g and setting 2 = Qye1 + Qses + (3e3, we get the Lie
algebra isomorphism g ~ R3,

0 —Qs Qy
QBQ: Qs 0 -0 l—)(Ql,QQ,Qg) €R3,
-y Q4 0

where the Lie bracket in R® is given by the cross-product (see Example 2.2).
Indeed, for the matrices

0 —as as 0 —bs ba
a= as 0 —-a and b= b3 0 —-b
—a9 al 0 —bz b1 0

corresponding to the vectors a = (a1, ag, az) and b = (b, by, b3) we have
[a,b] = ¢,
where ¢ corresponds to the vector ¢ = a x b. Moreover,
B(a,b) =a-b.
It is easy to see that if A = diag(Iy, Is,I3), then
A-Q=A0+ QA,

where A = diag(ly,ls,13) and

 L+L-1

I+ 13— I L+1,-1I3
B == 313: .

I
! 2 2

712

Thus
[A-Q,Q] = AQ? — 0?4

and (3.13) become celebrated Euler’s equations for rotation of a free rigid body
around a fized point,

L = (I — 13)Q03,
Q0 = (I3 — 1), Q3,
Q3 = (I — 1)1

— the system of first order differential equations. Finally, the position g(t) of a
rigid body is determined from the first order linear matrix differential equation,

g =9Q.
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It is easy to see by direct computation that Euler’s equations have two
integrals of motion, total kinetic energy

T =013 + L3 + 303
and total angular momentum
M? = 10} + 1303 + 1303,

Leaving aside the trivial case I; = Iy = I3, we conclude that the motion in R?
is constrained to the intersection of two quadrics which is a real form of elliptic
curve.

PROBLEM 3.1. Prove all statements in Sect. 3.2.

PROBLEM 3.2. Show that if
}E;% ‘/eﬁ(r) = =00,

then there are orbits with 7., = 0 — “fall” of the particle to the center.

PROBLEM 3.3. Prove that all finite trajectories in the central field are closed only
when N
V(r)=kr®, k>0, and V(r)=—-—, a>0.
T

PROBLEM 3.4 (Hamilton’s Theorem). Prove that the velocity vector v = #(t)
of the Kepler problem moves along a circle C' in the plane P from Sect. 3.2, not in
general centered at the origin. Any such “velocity circle” can occur, and a circle C,
together with its orientation, determines the orbit » = r(¢) uniquely.

PROBLEM 3.5. Derive Kepler’s third law from Kepler’s second law and equation
PROBLEM 3.6. Find parametric equations for orbits in the Kepler’s problem.

PROBLEM 3.7. For the Kepler problem, consider vector fields Y = (Y1, Y2 Y?)
on R® defined by (2.4) with a”(r,7) = 2¢ir7 — ri¢? — §%p . 7. Prove that they
satisfy (2.5) with K = L (K', K2, K?), and show that corresponding integrals

T

of motions are components of the Laplace-Runge-Lenz vector.

PROBLEM 3.8. Prove that the Laplace-Runge-Lenz vector W points in the di-
rection of the major axis of the orbit and that |W| = ae, where e is the eccentricity
of the orbit.

PROBLEM 3.9. Using the conservation of the Laplace-Runge-Lenz vector, prove
that trajectories in Kepler’s problem with E < 0 are ellipses. (Hint: Evaluate W - r
and use the previous problem.)

PROBLEM 3.10. Derive Euler-Arnold equations.

PROBLEM 3.11. In case g = so(3) prove that for every symmetric A € Endg
there is a symmetric 3 x 3 matrix A such that

A-Q=AQ+ QA

PROBLEM 3.12. Solve Euler’s equations.



LECTURE 4

Legendre transform and Hamilton’s equations

4.1. Legendre transform

Let T*M be the cotangent bundle of M. As in case of the tangent bundle,
we have the following definition.

DEFINITION. Let (U, ¢) be a coordinate chart on M. Coordinates

(p7q) = (p17"'7pn7q17"'7qn)

on the chart T*U ~ R™ x U on the cotangent bundle T*M are called standard
coordinates' if for (p,q) € T*U and f € C>=(U)

0 :
pl(df):aqfla t=1,...,n.

Equivalently, standard coordinates on T*U are uniquely characterized by
the condition that p = (p1,...,pn) are coordinates in the fiber corresponding

0
to the basis dq', ..., dq" for T;M, dual to the basis —— for T, M.

9
o A
DEFINITION. The 1-form 6 on T* M, defined in standard coordinates by
0= pidg' = pdq,
i=1
is called Liouwille’s canonical 1-form.

Corollary 2.1 shows that 6 is a well-defined 1-form on T*M. It also admits
invariant definition,

0(u) = p(ms(u)), where wu €T, T M,

and 7 : T*M — M is the canonical projection.

DEFINITION. A fibre-wise mapping 77, : TM — T*M is called a Legendre
transform associated with the Lagrangian L, if

01, = 17(0).

1Following tradition, the first n coordinates parametrize the fiber of T*U and the last n
coordinates parametrize the base.

33
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In standard coordinates the Legendre transform is given by

) oL .
7.(q,q) = (p,q), where p=8fq(q,q)-

The mapping 71, is a local diffeomorphism if and only if the Lagrangian L is
non-degenerate.

4.2. Hamiltonian function

DEFINITION. Suppose that the Legendre transform 77 : TM — T*M is a
diffeomorphism. The Hamiltonian function H : T*M — R, associated with the
Lagrangian L : TM — R, is defined by

oL
HOTLZEL:qf,—L.
9q

In standard coordinates,

H(pvq) = (pq - L(qu))|p:% )

oL
where q is a function of p and g defined by the equation p = ?(q, q) through

the implicit function theorem. The cotangent bundle T* M is called the phase
space of the Lagrangian system (M, L). It turns out that on the phase space
the equations of motion take a very simple and symmetric form.

THEOREM 4.1. Suppose that the Legendre transform 7, : TM — T*M is a
diffeomorphism. Then the Fuler-Lagrange equations in standard coordinates on
TM,

d oL 0L .

— = — — = U, 7,:].,...,7?,,

dt 9¢*  Oqt
are equivalent to the following system of first order differential equations in
standard coordinates on T* M :

. oH . oH .
p’L* 8qz7 qiapl) - Yyt M
PrOOF. We have
OH OH
dH = —d —d
op D+ q q
.. oL oL ..
= | pdq+qdp — —dq — ——dq
0q dq pOL
aq

. oL
(o)

Thus under the Legendre transform,

_om
i=75, ad p

oL’

p= g

_d9oL _OoL _ 9H
dtdqg Oq  Oq’
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Corresponding first order differential equations on T*M are called Hamil-
ton’s equations (canonical equations).

COROLLARY 4.2. The Hamiltonian H is constant on the solutions of Hamil-
ton’s equations.

Proor. For H(t) = H(p(t),q(t)) we have

A _OH_ O OHOH OHOH _
dt_(‘?qq Bpp_aq op Op 0q
For the Lagrangian

"2

L= m; — V(@) =T-V, rcR3,
of a particle of mass m in a potential field V (r) we have
oL .
p= 5 =mr

Thus the Legendre transform 7, : TR? — T*R3 is a global diffeomorphism,
linear on the fibers, and

2
H(p.r) = (pr = L)|,_2 = 3= +V(r) =T+V.

Hamilton’s equations

7_'73H7£

op m’
. OH oV
P="%r " or

oV
are equivalent to Newton’s equations with the force FF = ——.

T
For the Lagrangian system describing small oscillators, considered in Exam-
ple 1.4, we have p = mq, and using normal coordinates we get

2

Hp.a) = (pd — L(a.d)|,_p = 2+ Vola) = 5 (0% +m D w2(0)?).

Similarly, for the system of N interacting particles, considered in Example 1.2,
we have p = (p1,...,pn), where

oL
T or,

Da =MuTe, a=1,...,N.

The Legendre transform 77, : TR3N — T*R3¥ is a global diffeomorphism, linear
on the fibers, and

H(p,r)=(pr—L)|._p =) = +V(r)=T+V.

= m 2ma
a
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In particular, for a closed system with pair-wise interaction,

N

2
Hp,r) =Y gt 3 Valra—m).
a=1 1<a<b<N

In general, consider the Lagrangian

n

L=Y laj(@)id - V(g). g€k,

ij=1

where A(q) = {ai;(q)}} ;= is a symmetric n x n matrix. We have

oL - o
pi= 'L:Zaw(q)qj7 ZZl,...,TL,
ol =

and the Legendre transform is a global diffeomorphism, linear on the fibers, if
and only if the matrix A(q) is non-degenerate for all g € R™. In this case,

n

H(p.q) = (P -~ L(¢,9))| _orL = > 2a (q)pip; + V()

S =

where {a*(q)}}';—; = A~"(q) is the inverse matrix.
4.3. Hamilton’s equations

With every function H : T*M — R on the phase space T*M there are
associated Hamilton’s equations — a first-order system of ordinary differential
equations, which in the standard coordinates on T*U has the form

oH . OH

4.1 y— 04 _ a1
(4.1) 2 o 9= o

The corresponding vector field Xz on T*U,

"\ (0H 0 OH 0 OH 0 0H 0
XH:Z( i i) N R
“— \9pi 0" Oq' Op; Op 9q  Oq Op
gives rise to a well-defined vector field Xy on T*M, called the Hamiltonian
vector field. Suppose now that the vector field Xy on T*M is complete, i.e.,
its integral curves exist for all times. The corresponding one-parameter group
{9t }+er of diffeomorphisms of T* M generated by Xy is called the Hamiltonian
phase flow. It is defined by g:(p,q) = (p(t), q(t)), where p(t), q(t) is a solution
of Hamilton’s equations satisfying p(0) = p, ¢(0) = q.

Liouville’s canonical 1-form 6 on T* M defines a 2-form w = df. In standard
coordinates on 7% M it is given by

w = dei Adq' = dp A dq,
i=1
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and is a non-degenerate 2-form. The form w is called canonical symplectic form
on T*M. The symplectic form w defines an isomorphism

J : T*(T*M) — T(T*M)

between tangent and cotangent bundles to T*M. For every (p,q) € T*M the

linear mapping J ' : T, yT*M — T, T M is given by

wluy,ug) = J M (ug)(u1), wui,us € Tip, )T M.
The mapping J induces the isomorphism
AYNT* M) ~ Vect(T*M)

between the infinite-dimensional vector spaces, which is linear over the ring
C>(T*M). Namely, if 9 is a 1-form on T*M, then the corresponding vector
field X = J(V) on T*M satisfies

(4.2) w,X)=9(Y) forall Y € Vect(T*M),
and, correspondingly,
(4.3) 9 =JHX) = —ixw.

In particular, in standard coordinates,

0 0
J(dp) = 9q and J(dq) = ~op’

so that Xg = J(dH). In this notation, for every f € C°(T*M),
(4.4) df = —ix,w.

THEOREM 4.3. The Hamiltonian phase flow on T* M preserves the canonical
symplectic form.

PROOF. We need to prove that (¢;)*w = w. Since g; is a one-parameter
group of diffeomorphisms, it is sufficient to show that

d, .
%(Qt) w

= ,CXHOJ = 07
t=0

where Lx,, is the Lie derivative along the Hamiltonian vector field Xp. Since
for every vector field X,

Lx(df) = d(X (1)),

we compute

OH o (oH
Lx,(dp;)=—d (W) and Lx,(d¢")=d ((91%) ,
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so that

n

Lxyw =Y (Lx,(dp:) Adg' +dp; A Lx,,(dq"))

=1
gH) Adg' + dp; Nd <2H>) = —d(dH)=0. O

:;:(_d( q' Di

The canonical symplectic form w on T*M defines the volume form

wn

— == wA - ANw
n! | ———

n

on T*M, called Liouville’s volume form.

COROLLARY 4.4 (Liouville’s theorem). The Hamiltonian phase flow on T* M
preserves Liouville’s volume form.

The restriction of the symplectic form w on T*M to the configuration space
M is 0. Generalizing this property, we get the following notion.

DEFINITION. A submanifold £ of the phase space T*M is called a La-
grangian submanifold if dim .Z = dim M and w|, = 0.

It follows from Theorem 4.3 that the image of a Lagrangian submanifold
under the Hamiltonian phase flow is a Lagrangian submanifold.

PROBLEM 4.1. Suppose that for a Lagrangian system (R", L) the Legendre trans-

form 77, is a diffeomorphism and let H be the corresponding Hamiltonian. Prove that

L
for fixed q and ¢ the function pg — H(p, q) has a single critical point at p = 9

G
PROBLEM 4.2. Give an example of a non-degenerate Lagrangian system (M, L)
such that the Legendre transform 7, : TM — T* M is one-to-one but not onto.
PROBLEM 4.3. Verify that Xy is a well-defined vector field on T* M.

PROBLEM 4.4. Show that if all level sets of the Hamiltonian H are compact
submanifolds of T* M, then the Hamiltonian vector field X is complete.

PROBLEM 4.5. Prove that Lx,(0) = d(—H + 6(Xgu)), where 6 is Liouville’s
canonical 1-form.
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Hamiltonian formalism

5.1. The action functional in the phase space
With every function H on the phase space T* M there is an associated 1-form
0 — Hdt = pdq — Hdt

on the extended phase space T*M xR, called the Poincaré-Cartan form. Let - :
[to,t1] — T*M be a smooth parametrized path in 7% M such that 7(v(t9)) = qo
and w(v(t1)) = q1, where m# : T*M — M is the canonical projection. By
definition, the lift of a path v to the extended phase space T*M x R is a path
o [to,t1] = T*M x R given by o(t) = (v(¢),t), and a path o in T*M x R
is called an admissible path if it is a lift of a path + in T*M. The space of
admissible paths in 7*M x R is denoted by P(T*M)Z;g A variation of an
admissible path o is a smooth family of admissible paths o., where € € [—¢q, £¢]
and o¢ = o, and the corresponding infinitesimal variation is

_ Oo.

Oe

(cf. Section 1.2). The principle of least action in the phase space is the following
statement.

So € T,P(T*M)%"

qo,to
e=0

THEOREM 5.1 (Poincaré). The admissible path o in T*M xR is an extremal
for the action functional

S(0) = / (pdq — Hdt) = / (pd — H)dt

if and only if it is a lift of a path v(t) = (p(t),q(t)) in T*M, where p(t) and
q(t) satisfy canonical Hamilton’s equations

OH . OH
0q’ = op’
PROOF. As in the proof of Theorem 1.1, for an admissible family o.(t) =
(p(t,e),q(t,e),t) we compute using integration by parts,

d SN ... OH_, OH
S(oe) = Z/ (q opi — pidq" — 5—~0q" — 52%) dt
i=1"1t0

de aq op;
- t
+ ZP@ 5q2|t$ :
=1

e=0

39
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Since dq(ty) = dq(t1) = 0, the path o is critical if and only if p(¢) and q(t)

satisfy canonical Hamilton’s equations (4.1). O

REMARK. For a Lagrangian system (M, L), every path v(¢) = (q(t)) in the

configuration space M connecting points gy and ¢; defines an admissible path
oL

A(t) = (p(t), q(t), t) in the phase space T* M by setting p = — . If the Legendre

aq’
transform 7, : TM — T*M is a diffeomorphism, then

5(7) = / (pg — H)dt = / "Ly (1), .

Thus the principle of the least action in a configuration space — Hamilton’s
principle — follows from the principle of the least action in a phase space. In
fact, in this case the two principles are equivalent (see Problem 4.1).

From Corollary 4.2 we immediately get the following result.

COROLLARY 5.2. Solutions of canonical Hamilton’s equations lying on the
hypersurface H(p,q) = E are extremals of the functional fg pdq in the class of
admissible paths o lying on this hypersurface.

COROLLARY 5.3 (Maupertuis’ principle). The trajectory v = (q(7)) of a
closed Lagrangian system (M, L) connecting points go and q1 and having energy
E is the extremal of the functional

oL . .
[ pa= [ 5zat. e
v v 94
on the space of all paths in the configuration space M connecting points gy and

q1 and parametrized such that H(%(T), q(r))=E.

The functional

So(v) = / pdq
¥
is called the abbreviated action'.

PRrROOF. Every path v = g(7), parametrized such that H(g—g, q) = E, lifts

to an admissible path o = (g—g(T), q(7),7), a < 7 < b, lying on the hypersurface

H(p,q) = E. O

5.2. The action as a function of coordinates

Consider a non-degenerate Lagrangian system (M, L) and denote by ~y(¢; go, vo)
the solution of Euler-Lagrange equations

1The accurate formulation of Maupertuis’ principle is due to Euler and Lagrange.
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with the initial conditions v(¢9) = g0 € M and (t9) = vo € Ty, M. Suppose
that there exist a neighborhood Vo C T, M of vg and t; > to such that for all
v € Vp the extremals y(¢; qo, v), which start at time tg at go, do not intersect in
the extended configuration space M x R for times ty < t < t;. Such extremals
are said to form a central field which includes the extremal vo(t) = v(¢; o, vo).
The existence of the central field of extremals is equivalent to the condition that
for every tg < t < t; there is a neighborhood U; C M of ~y(t) € M such that
the mapping

(5.1) Vo 3 v q(t) =(t; q0,v) € Uy

is a diffeomorphism. Basic theorems in the theory of ordinary differential
equations guarantee that for ¢; sufficiently close to to every extremal ~(t) for
top < t < t; can be included into the central field. In standard coordinates the
mapping (5.1) is given by ¢ — q(t) = (t; qo, ).

For the central field of extremals v(¢; qo, ), to < t < t1, we define the action
as a function of coordinates and time (or, classical action) by

t
S(a.tianto) = [ LO(7)dr.
to
where ~(7) is the extremal from the central field that connects gg and q. For
given go and to, the classical action is defined for t € (¢o,t1) and q € U, ;4 Us-
For a fixed energy F,

(5.2) 5(q,t;q0,t0) = So(g.t; o, to) — E(t — to),
where S is the abbreviated action from the previous section.

THEOREM 5.4. The differential of the classical action S(q,t) with fized initial
point is given by
dS = pdq — Hdt,

oL
where p = a—q(q7 q) and H = pg — L(q,q) are determined by the velocity q of

the extremal y(7) at time t.

PROOF. Let g. be a path in M passing through q at ¢ = 0 with the tangent
vector v € TgM ~ R™, and for € small enough let ~.(7) be the family of
extremals from the central field satisfying ~:(t9) = go and ~:(t) = g.. For the
infinitesimal variation §y we have 6(tg) = 0 and d(t) = v, and for fixed t we
get from the formula for variation with the free ends (1.6) that

oL

dS(v) = 8—(111.

S
This shows that %4 = p. Setting q(t) = v(t), we obtain

d as . 0S
G500 =Gla+ 5 =L
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oS
that — =L —pg=—H. g
so tha N pq

COROLLARY 5.5. The classical action satisfies the following nonlinear partial
differential equation

oS oS
5.3 — 4+ H|— =0.
5. 5 11 (G0a)
This equation is called the Hamilton-Jacobi equation. Hamilton’s equations

(4.1) can be used for solving the Cauchy problem

(54) S(qat)|t=0 - S(q), ENS COO(M)v

for Hamilton-Jacobi equation (5.3) by the method of characteristics.
We can also consider the action S(q,t; go, to) as a function of both variables
q and gg. The analog of Theorem 5.4 is the following statement.

PROPOSITION 5.1. The differential of the classical action as a function of
initial and final points is given by
dS = pdq — podqo — H(p, q)dt + H(po, qo)dto.
5.3. Classical observables and Poisson bracket

Smooth real-valued functions on the phase space T*M are called classical
observables. The vector space C*°(T*M) is an R-algebra — an associative
algebra over R with a unit given by the constant function 1, and with a mul-
tiplication given by the point-wise product of functions. The commutative al-
gebra C°(T*M) is called the algebra of classical observables. Assuming that
the Hamiltonian phase flow g; exists for all times, the time evolution of every
observable f € C®°(T*M) is given by

fip, @) = fg:(p.a)) = f(p(t),q(t), (p,q) € T"M.
Equivalently, using the Hamiltonian vector field

_OHO 0HO
"~ opoq oqop’
the time evolution is described by the differential equation

dfy _ dfsie _d(fiogs) _
dt  ds R N ds s—0 = Xu(fi)

:Z”l(aﬂaft 8H8ft>_8H8ft OH 8f,

dp; 0¢°  Oq' Op;

- Op dq Oq Op’

called Hamilton’s equation for classical observables. Setting

of 0 of o0
(5.5) Um=&@=££—££,Memwwx
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we can rewrite Hamilton’s equation in the concise form

(56) Ty,

where it is understood that (5.6) is a differential equation for a family of func-
tions f; on T* M with the initial condition f;(p,q)|,_, = f(p,q). The properties
of the bilinear mapping

{, }:C®(T*"M) x C®(T*M) — C(T*M)
are summarized below.
THEOREM 5.6. The mapping { , } satisfies the following properties.

(i) (Relation with the symplectic form)
{f.g} =w(J(df), J(dg)) = w(X, Xg).
(i) (Skew-symmetry)
{f.9} =g, f}
(iii) (Leibniz rule)
{fg.h} = f{g.h} + g{f h}.
(iv) (Jacobi identity)

{f> {g7h}} + {97{h7f}} + {h7 {ﬁg}} =0
forall f,g,h € C=(T*M).

PROOF. Property (i) immediately follows from the definitions of w and J
in Section 4.3. Namely, it follows from (4.2) that

w(Xy, Xy) = w(Xy, J(dg)) = dg(Xy) = Xy (9) = {f, g}

Properties (ii)-(iii) are obvious. The Jacobi identity could be verified by a
direct computation using (5.5), or by the following elegant argument. Observe
that {f, g} is a bilinear form in the first partial derivatives of f and g, and every
term in the left-hand side of the Jacobi identity is a linear homogenous function
of second partial derivatives of f,g, and h. Now the only terms in the Jacobi
identity which could actually contain second partial derivatives of a function h
are the following;:

{f’ {g7h}} + {gv {h7f}} = (XfXg - Xng)(h)

However, this expression does not contain second partial derivatives of h since
it is a commutator of two differential operators of the first order which is again
a differential operator of the first order! O
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The observable {f, g} is called the canonical Poisson bracket of the observ-
ables f and g. The Poisson bracket map { , } : C®°(T*M) x C®(T*M) —
C>°(T*M) turns the algebra of classical observables C*°(T*M) into a Lie al-
gebra with a Lie bracket given by the Poisson bracket. It has an important
property that the Lie bracket is a bi-derivation with respect to the multiplica-
tion in C*°(T*M). The algebra of classical observables C*°(T*M) is an example
of the Poisson algebra — a commutative algebra over R carrying a structure of
a Lie algebra with the property that the Lie bracket is a derivation with respect
to the algebra product.

In Lagrangian mechanics, a function I on T'M is an integral of motion for the
Lagrangian system (M, L) if it is constant along the trajectories. In Hamiltonian
mechanics, an observable I — a function on the phase space T*M — is called an
integral of motion (first integral) for Hamilton’s equations (4.1) if it is constant
along the Hamiltonian phase flow. According to (5.6), this is equivalent to the
condition

{H,I}=0.
It is said that the observables H and I are in involution (Poisson commute).

5.4. Canonical transformations and generating functions

DEFINITION. A diffeomorphism g of the phase space T*M is called a canon-
ical transformation, if it preserves the canonical symplectic form w on T*M, i.e.,
g*(w) = w. By Theorem 4.3, the Hamiltonian phase flow g¢; is a one-parameter
group of canonical transformations.

PROPOSITION 5.2. Canonical transformations preserve Hamilton’s equations.

PROOF. From ¢g*(w) = w it follows that the mapping J : T*(T*M) —
T(T*M) satisfies

(5.7) geoJogt =
Indeed, for all X,Y € Vect(M) we have
w(X,Y) = g"(w)(X,Y) = w(g«(X),g+(Y)) o g,
so that for every 1-form @ on M,
w(X, J(g"(9))) = g"()(X) = 9(g:(X)) 0 g = w(g«(X), J(9)) 0 g,
which gives J(g*(9)) = g7 (J(9)). Using (5.7), we get
9(X#) = g« (J(dH)) = J((¢") ' (dH)) = Xk,

where K = H o g—!. Thus the canonical transformation g maps trajectories of
the Hamiltonian vector field Xy into the trajectories of the Hamiltonian vector
field Xg. O

2Since g is a diffeomorphism, g+ X is a well-defined vector field on M.
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REMARK. In classical terms, Proposition 5.2 means that canonical Hamil-

ton’s equations
. GH( ) . 8H( )
p= oq P, q), Q—ap p,.q

in new coordinates (P, Q) = ¢g(p, q) continue to have the canonical form

P:_%(P7Q)7 Q= 87P(P7Q)

with the old Hamiltonian function K (P, Q) = H(p, q).

Consider now the classical case M = R™. For a canonical transformation

(P,Q) = g(p,q) set P = P(p,q) and Q = Q(p, q). Since dP N dQ = dp \dgq
on T*M ~ R?", the 1-form pdg — PdQ — the difference between the canonical
Liouville 1-form and its pullback by the mapping g — is closed. From the
Poincaré lemma it follows that there exists a function F(p, q) on R?" such that

(5.8) pdqg — PdQ = dF(p,q).

) . OP orP" .
Now assume that at some point (pg, qo) the n x n matrix — = is
op Op; i,j=1
non-degenerate. By the inverse function theorem, there exists a neighborhood
U of (po, qo) in R?" for which the functions P, q are coordinate functions. The

function
S(P,q) = F(p,q) + PQ
is called a generating function of the canonical transformation g in U. It follows

from (5.8) that
dS = pdq + QdP,

whence in new coordinates P,q on U,

S oS

The converse statement below easily follows from the implicit function theorem.

PROPOSITION 5.3. Let S(P,q) be a function in some neighborhood U of a
point (Py, qo) € R?™ such that the n x n matriz

028 028 "
— (P, =< — (P,
8P6q( OaQO) {8Pi8q3( onyo)}i’j_l

is non-degenerate. Then S is a generating function of a local (i.e., defined in
some neighborhood of (Py, qo) in R*™) canonical transformation.

Suppose there is a canonical transformation (P,Q) = g¢(p,q) such that
H(p,q) = K(P) for some function K. Then in the new coordinates Hamilton’s
equations take the form

0K

(5.9) P =0, Qza?,
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and are trivially integrated:

P(1)= P(0), Q() = Q) + 125 (P(0).

opP
Assuming that the matrix — is non-degenerate, the generating function S(P, q)

Op

satisfies the differential equation
oS

where after the differentiation one should substitute ¢ = q(P, Q), defined by
the canonical transformation g=!. The differential equation (5.10) for fixed P,
as it follows from (5.2), coincides with the Hamilton-Jacobi equation for the
abbreviated action Sy = S — Et where E = K(P),

050
H(— P.q), ) - E.
9 (P.q).q
THEOREM 5.7 (Jacobi). Suppose that there is a function S(P,q) which de-
pends on n parameters P = (Py, ..., P,), satisfies the Hamilton-Jacobi equation
2
(5.10) for some function K(P), and has the property that the nxn matriz 861)3;
q
1s non-degenerate. Then Hamilton’s equations
_om_on
b= aq’ q= op

can be solved explicitly, and the functions P(p,q) = (P1(p,q),..., Pu(p,q)),

defined by the equations p = 5.—(P7 q), are integrals of motion in involution.
q
oS oS . .
PROOF. Set p = a—(P,q) and Q = 8—P(P,q). By the inverse function
q

theorem, ¢g(p,q) = (P, Q) is a local canonical transformation with the gener-
ating function S. It follows from (5.10) that H(p(P,Q),q(P,Q)) = K(P), so
that Hamilton’s equations take the form (5.9). Since w = dP A dQ, integrals of
motion P;(p,q),..., P.(p,q) are in involution. O

The solution of the Hamilton-Jacobi equation satisfying conditions in Theo-
rem 5.7 is called the complete integral. At first glance it seems that solving the
Hamilton-Jacobi equation, which is a nonlinear partial differential equation, is
a more difficult problem then solving Hamilton’s equations, which is a system of
ordinary differential equations. It is quite remarkable that for many problems
of classical mechanics one can find the complete integral of the Hamilton-Jacobi
equation by the method of separation of variables. By Theorem 5.7, this solves
the corresponding Hamilton’s equations.
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PROBLEM 5.1. Let w : T*M — M be the canonical projection, and let .Z be a
Lagrangian submanifold. Show that if the mapping 7|, : £ — M is a diffeomor-
phism, then .Z is a graph of a smooth function on M. Give examples when for some
t > 0 the corresponding projection of g+(-Z) onto M is no longer a diffeomorphism.

PROBLEM 5.2. Find the generating function for the identity transformation P =
p,Q=gq
PROBLEM 5.3. Prove Proposition 5.3.

PROBLEM 5.4. Suppose that the canonical transformation g(p,q) = (P, Q) is
such that locally (Q, g) can be considered as new coordinates (canonical transforma-
tions with this property are called free). Prove that S1(Q, q) = F(p, q), also called a
generating function, satisfies

851 8Sl
=— d P=——.
p 94 an 20

PROBLEM 5.5. Find the complete integral for the case of a particle in R* moving

in a central field.






LECTURE 6

Symplectic and Poisson manifolds

6.1. Symplectic manifolds

The notion of a symplectic manifold is a generalization of the example of a
cotangent bundle T M.

DEFINITION. A non-degenerate, closed 2-form w on a manifold .# is called
a symplectic form, and the pair (A#,w) is called a symplectic manifold.

Since a symplectic form w is non-degenerate, a symplectic manifold .Z is

necessarily even-dimensional, dim .#Z = 2n. The nowhere vanishing 2n-form w™
n

w
defines a canonical orientation on .#, and as in the case # = T*M, — is

n!
called Liouville’s volume form. We also have the general notion of a Lagrangian
submanifold.

DEFINITION. A submanifold .# of a symplectic manifold (.#,w) is called a
Lagrangian submanifold, if dim ¥ = %dim/// and the restriction of the sym-
plectic form w to £ is 0.

Besides cotangent bundles, another important class of symplectic manifolds
is given by Kihler manifolds. The simplest compact Kihler manifold is CP! ~
52 with the symplectic form given by the area 2-form of the Hermitian metric
of Gaussian curvature 1 — the round metric on the 2-sphere. In terms of the
local coordinate z associated with the stereographic projection CP* ~ CU{cc},

dz NdZ

w=21—0>.
(1+12%)?

Similarly, the natural symplectic form on the complex projective space CP"
is the symplectic form of the Fubini-Study metric. By pull-back, it defines
symplectic forms on complex projective varieties.

The simplest non-compact Kéahler manifold is the n-dimensional complex
vector space C™ with the standard Hermitian metric. In complex coordinates

z=(z',...,2") on C" it is given by

h=dz@dz=> dz*®dz".
a=1
In terms of real coordinates (x,y) = (x!,..., 2" y!,...,y") on R?" ~ C", where

z = x + 1y, the corresponding symplectic form w = —Imh has the canonical

49
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form .
i = « o
w=dzNdz :;da: Ady® = dz A dy.
This example naturally leads to the following definition.

DEFINITION. A symplectic vector space is a pair (V,w), where V' is a vector
space over R and w is a non-degenerate, skew-symmetric bilinear form on V.

It follows from basic linear algebra that every symplectic vector space V has
a symplectic basis — a basis e',...,e", fi,..., fn of V, where 2n = dim V, such
that

(e, ) =w(fi f) =0 and w(e, f;) =8 ij=1,...,n.

In coordinates (p,q) = (p1,---,Pn,q",...,q") corresponding to this basis, V =~
R?" and

w=dpAdq= demdqi.
=1

Thus every symplectic vector space is isomorphic to a direct product of the
phase planes R? with the canonical symplectic form dpAdg. Introducing complex
coordinates z = p+iq, we get the isomorphism V' ~ C", so that every symplectic
vector space admits a Kahler structure.

It is a basic fact of symplectic geometry that every symplectic manifold is
locally isomorphic to a symplectic vector space.

THEOREM 6.1 (Darboux’ theorem). Let (.#,w) be a 2n-dimensional sym-
plectic manifold. For every point x € M there is a neighborhood U of x with
local coordinates (p,q) = (p1,---,0n,q",...,q") such that on U

w=dpANdq= dei/\dqi.
i=1

Coordinates p,q are called canonical coordinates (Darboux coordinates).
The proof proceeds by induction on n with the two main steps stated as Prob-
lems 6.1 and 6.2.

A non-degenerate 2-form w for every x € .# defines an isomorphism J :
Tr M — Ty M by

w(uy,ug) = J  (ug)(ur), ui,us € Tyl .
Explicitly, for every X € Vect(.#) and ¥ € A'(.#) we have
w(X,J(¥) =9(X) and J HX)=—ix(w).

Defining the Hamiltonian vector field associated with the function f by the
formula X; = J(df) we have

(61) df = _in (UJ)7

cf. formulas (4.2)—(4.4). This proves the following result.
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LEMMA 6.1. A vector field X on A is a Hamiltonian vector field if and only
if the 1-form ix(w) is exact.

In local coordinates & = (z!,...,2?") for the coordinate chart (U, ¢) on .,
the 2-form w is given by

where {w;; (w)}f?zl

on ¢(U). Denoting the inverse matrix by {w% (x)

is a non-degenerate, skew-symmetric matrix-valued function

2n

ii—1, we have
;

2n
J(da') = waij(m)%, i=1,...,2n.
j=1

DEFINITION. A Hamiltonian system is a pair consisting of a symplectic man-
ifold (A ,w), called a phase space, and a smooth real-valued function H on .Z,
called Hamiltonian. The motion of points on the phase space is described by
the vector field

Xy = J(dH),

called a Hamiltonian vector field.

The trajectories of a Hamiltonian system ((.#,w), H) are the integral curves
of a Hamiltonian vector field Xz on .#. In canonical coordinates (p,q) they
are described by the canonical Hamilton’s equations (4.1),

P= 0 1T o

Suppose now that the Hamiltonian vector field Xy on .# is complete. The
Hamiltonian phase flow on 4 associated with a Hamiltonian H is a one-
parameter group {g¢:}ter of diffeomorphisms of .# generated by Xpy. The
following statement generalizes Theorem 4.3.

THEOREM 6.2. The Hamiltonian phase flow preserves the symplectic form.

Proor. It is sufficient to show that Lx,w = 0. Using Cartan’s formula
(1.1) and dw = 0, we get for every X € Vect(.#),

Lxw=(doix)(w),
and it follows from Lemma 6.1 that
Lx,w=—d(dH)=0. O

DEFINITION. A vector field X on a symplectic manifold (.#,w) is called a
symplectic vector field if the 1-form ix (w) is closed, which is equivalent to the
condition Zxw = 0.
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The commutative algebra C*°(.#), with a multiplication given by the point-
wise product of functions, is called the algebra of classical observables. Assuming
that the Hamiltonian phase flow g; exists for all times, the time evolution of
every observable f € C™(.#) is given by

ft(x):f(gt($))7 1'6%7
and is described by the differential equation

dfy
T Xu(ft)

— Hamilton’s equation for classical observables. Hamilton’s equations for ob-
servables on .Z have the same form as Hamilton’s equations on .# = T*M,
considered in Section 2.3. Since

Xu(f) =df(Xu) = w(Xnu, J(df)) = w(Xu, Xy),

we have the following definition.

DEFINITION. A Poisson bracket on the algebra C*°(.#) of classical observ-
ables on a symplectic manifold (#,w) is a bilinear mapping { , } : C®(#) x
C®( M) — C(M), defined by

{f.9} =w(Xy, Xy), f.g€CF(A).
Now Hamilton’s equation takes the concise form

df
6.2 — ={H
(62) = £,
understood as a differential equation for a family of functions f; on .# with the
initial condition f¢|,_, = f. In local coordinates ¢ = (z*,...,2%") on

(Foda) = - 3 i) L2 002)

ij=1

THEOREM 6.3. The Poisson bracket { , } on a symplectic manifold (A ,w)
is skew-symmetric and satisfies Leibniz rule and the Jacobi identity.

PRrROOF. The first two properties are obvious. It follows from the definition
of a Poisson bracket and the formula

that the Jacobi identity is equivalent to the property

(6.3) [Xy, Xgl = Xi1.9-
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Let X and Y be symplectic vector fields. Using Cartan’s formulas (1.1)—(1.2)
and (4.4), we get

ix,y)(w) = Lx(iv (w)) — iy (Lx(w))
=d(ix oiy(w)) +ixd(iy(w))
= d(w(Y, X)) =iz(w),
where Z is a Hamiltonian vector field corresponding to w(X,Y) € C®(.#).

Since the 2-form w is non-degenerate, this implies [X,Y] = Z, so that setting
X =X;,Y = X, and using {f, g} = w(Xy, X,), we get (6.3). O

From (6.3) we immediately get the following result.

COROLLARY 6.4. The subspace Ham(.4) of Hamiltonian vector fields on A
is a Lie subalgebra of Vect(.#). The mapping C°(#) — Ham(.#), given by
f = Xy, is a Lie algebra homomorphism with the kernel consisting of locally
constant functions on A .

As in the case # = T*M (see Section 5.3), an observable I — a function
on the phase space .# — is called an integral of motion (first integral) for the
Hamiltonian system ((.#,w), H) if it is constant along the Hamiltonian phase
flow. According to (6.2), this is equivalent to the condition

(6.4) {H,I} =0.
It is said that the observables H and I are in involution (Poisson commute).
From the Jacobi identity for the Poisson bracket we get the following result.
COROLLARY 6.5 (Poisson’s theorem). The Poisson bracket of two integrals
of motion is an integral of motion.
Proor. If {H,I1} = {H,I,} =0, then
{H,{L,L}}={{H, L}, b} - {{H,I},1,} = 0. O

It follows from Poisson’s theorem that integrals of motion form a Lie algebra
and, by (6.3), corresponding Hamiltonian vector fields form a Lie subalgebra in
Vect(#). Since {I,H} = dH(X;) = 0, the vector fields X; are tangent to
submanifolds .#g = {x € .# : H(x) = E} — the level sets of the Hamiltonian
H. This defines a Lie algebra of integrals of motion for the Hamiltonian system
((A ,w), H) at the level set .

6.2. Poisson manifolds

The notion of a Poisson manifold generalizes the notion of a symplectic
manifold.

DEFINITION. A Poisson manifold is a manifold .# equipped with a Poisson
structure — a skew-symmetric bilinear mapping

{,}:C®(M) x CF (M) — CF (M)

which satisfies the Leibniz rule and Jacobi identity.
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Equivalently, .# is a Poisson manifold if the algebra A = C°°(.#) of classical
observables is a Poisson algebra — a Lie algebra such that the Lie bracket is
a bi-derivation with respect to the multiplication in A (a point-wise product
of functions). It follows from the derivation property that in local coordinates

x = (z1,...,2") on .#, the Poisson bracket has the form

N
(f, g} (x) = Z nij(x)ﬁgéif) 8;;3?),

ij=1

The 2-tensor 1% (x), called a Poisson tensor, defines a global section 7 of the
vector bundle T.#Z NT .# over A .

The evolution of classical observables on a Poisson manifold is given by
Hamilton’s equations, which have the same form as (6.2),

daf

— =X ={H, [}
o = Xu(f) = {1, f)
The phase flow g; for a complete Hamiltonian vector field Xy = {H, - } defines

the evolution operator U; : A — A by

Ue(f)(x) = f(ge(x)), fe A

THEOREM 6.6. Suppose that every Hamiltonian vector field on a Poisson
manifold (M ,{ , }) is complete. Then for every H € A, the corresponding
evolution operator Uy is an automorphism of the Poisson algebra A, i.e.,

(6.5) Ui({f,9}) = {U:(f), Ui(g)} forall f g€ A

Conversely, if a skew-symmetric bilinear mapping { , } : C°(A) x C° (M)
— C®°(M) is such that Xg = {H, -} are complete vector fields for all H € A,
and corresponding evolution operators Uy satisfy (6.5), then (A,{ , }) is a
Poisson manifold.

PrOOF. Let f; = U(f), gt = Us(g), and' hy = Uy ({f, g}). By definition,

G fg) = (UH, )0+ o {0}y and S0 = (17,

dt
If (#,{, })is a Poisson manifold, then it follows from the Jacobi identity that

HH, fi} 9 + e, {H, e}y = {H, { fe; 9} )

so that h; and {f, g:} satisfy the same differential equation (6.2). Since these
functions coincide at ¢ = 0, (6.5) follows from the uniqueness theorem for the
ordinary differential equations.

Conversely, we get the Jacobi identity for the functions f, g, and H by dif-
ferentiating (6.5) with respect to ¢t at t = 0. O

IHere gt is not the phase flow!
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COROLLARY 6.7. A global section n of T.# NT 4 is a Poisson tensor if and
only if
Lx,n=0 foral feA

DEFINITION. The center of a Poisson algebra A is
ZA) ={feA:{f.g} =0 forall ge A}

A Poisson manifold (., { , }) is called non-degenerate if the center of a Poisson
algebra of classical observables A = C°°(.#) consists only of locally constant
functions (Z(A) = R for connected .#).

Equivalently, a Poisson manifold (.#,{ , }) is non-degenerate if the Poisson
tensor 7 is non-degenerate everywhere on .#, so that .# is necessarily an even-
dimensional manifold. A non-degenerate Poisson tensor for every z € .# defines
an isomorphism J : T .4 — T,.# by

n(uy,ug) = ua(J(u1)), ui,ug € Ty M.

In local coordinates = (z!,...,2") for the coordinate chart (U, ) on .#, we
have
_ N P
J(dz*) = (x)=—, i=1,...,N.
( € ) ; T] (m) ax] ) ? ? Y

A map @ : M — M5 of Poisson manifolds (#1,{ , }1) and (A2,{, }2) is
called a Poisson mapping, if

{fowv,govh ={f,gtacp forall fgeC™(4>).

A symplectic manifold carries a natural Poisson structure. Its non-degeneracy
follows from the non-degeneracy of a symplectic form. Converse statement also
holds.

THEOREM 6.8. A non-degenerate Poisson manifold is a symplectic manifold.

PROOF. Let (#,{, }) be a non-degenerate Poisson manifold. Define the
2-form w on .# by

wX,Y)=JHY)(X), X,Y € Vect(#),

where the isomorphism J : T*.# — T.# is defined by the Poisson tensor 7. In

local coordinates = (2*,...,2") on .,
w=— Z Nij (33) d.’IZ‘l N dfj,
1<i<j<N

where {n;;(z)});_, is the inverse matrix to {n¥(x)});_,. The 2-form w is

skew-symmetric and non-degenerate. For every f € Alet X; = {f, -} be the
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corresponding vector field on .#. The Jacobi identity for the Poisson bracket
{, } is equivalent to Lx,n = 0 for every f € A, so that

Lx,w=0.
Since Xy = Jdf, we have w(X, Jdf) = df (X) for every X € Vect(.#), so that
w(Xy, Xg) = {f, 9}
By Cartan’s formula for the exterior differential,
dw(X,Y,Z) = 3 (Lxw(Y,Z) + Lyw(Z, X) + Lzw(X,Y)
—w([X, Y], 2) —w([Z,X],Y) - w([Y, Z], X)),

where XY, Z € Vect(#). Now setting X = X;,Y = X, Z = X}, we get

dw (X, Xg, Xn) = X [X g, Xg]) + 0(Xs [Xgs Xn]) + w(Xg, [Xn, Xf]))
Xn, X(1.gy) +w(Xp, Xigny) +w(Xg, X 1))
AL 9by {49 hi +{9.{h. f}})

(
(

>

{

The exact 1-forms df, f € A, generate the vector space of 1-forms A!(.#)
as a module over A, so that Hamiltonian vector fields X; = Jdf generate the
vector space Vect(.#) as a module over A. Thus dw = 0 and (A#,w) is a
symplectic manifold associated with the Poisson manifold (.7, { , }). O

REMARK. One can also prove this theorem by a straightforward computation
in local coordinates © = (z!,...,2) on .#. Just observe that the condition

Onij(x) | Onp(x) . Omi(@)
which is a coordinate form of dw = 0, follows from the condition

N k(g ) ik (o ] li(gp
2 (nij(w)ana;j ot (a) anax(j Ly ”k](””)anaz(j )> -

=0, i,j4l=1,...,N,

j=1
which is a coordinate form of the Jacobi identity, by multiplying it three times
by the inverse matrix 7;;(x) using
N .

(o Ope(T) | On'(x)

D P _
> (7@ ) 1 P @) =
p=1

REMARK. Let .# = T*R"™ with the Poisson bracket { , } given by the

canonical symplectic form w = dp A dq, where (p,q) = (p1,---,Pn,q", ..., q")
are coordinate functions on T*R"™. The non-degeneracy of the Poisson manifold
(T*R™,{ , }) can be formulated as the property that the only observable f €
C>°(T*R™) satisfying

{fapl}:"':{fapn}:oa {faql}:"':{faqn}:o
is f(p,q) = const.




6.3. NOETHER THEOREM WITH SYMMETRIES 57

6.3. Noether theorem with symmetries

Let G be a finite-dimensional Lie group that acts on a connected symplectic
manifold (.#,w) by symplectomorphisms. The Lie algebra g of G acts on .#
by vector fields

d

ds s=0

Xe(f)(@) flet ),
and the linear mapping g > { — X¢ € Vect(.#) is a homomorphism of Lie
algebras,

[XfaXn] = X[S,n]7 5777 €g.

The G-action on M is called a Hamiltonian action, if X¢ are Hamiltonian vector
fields, i.e., for every & € g there is &, € C™(4#), defined up to an additive
constant, such that X¢ = Xg, = J(d®¢). Using (6.3), we see that for the
Hamiltonian action

X{q)s"l’n} = X‘i’[s,nJ’
so that
{@e, @} = P ) + (€, 1)

for some constants ¢(£, 7). The Hamiltonian action is called a Poisson action if
there is a choice of functions @, such that the linear mapping ® : g — C°°(.#)
is a homomorphism of Lie algebras,

(66) {CI)@ q)n} = cb[{,n]a 6377 €g.

DEFINITION. A Lie group G is a symmetry group of the Hamiltonian system
((A ,w), H) if there is a Hamiltonian action of G on .# such that

H(g-x)=H(z), g€G, ze€ . #.

THEOREM 6.9 (Noether theorem with symmetries). If G is a symmetry
group of the Hamiltonian system ((# ,w), H), then the functions ®¢, £ € g, are
the integrals of motion. If the action of G is Poisson, the integrals of motion
satisfy (6.6).

PROOF. By definition of the Hamiltonian action, for every £ € g,
0=Xe(H) = Xo,(H) = {P¢, H}. O

COROLLARY 6.10. Let (M, L) be a Lagrangian system such that the Legendre
transform 1, : TM — T*M is a diffeomorphism. Then if a Lie group G
is a symmetry of (M, L), then G is a symmetry group of the corresponding
Hamiltonian system (T*M,w), H = E, OTEI), and the corresponding G-action
on T*M s Poisson. In particular, ® = —I¢ o 7', where It are Noether
integrals of motion for the one-parameter subgroups of G generated by £ € g.
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PRrROOF. Let X be the vector field associated with the one-parameter sub-
group {e*¢},cr of diffeomorphisms of M, used in Theorem 2.2, and let X’ be
its lift to 7M. We have?

(6.7) Xe = —(110)«(X"),

and it follows from (2.3) that ®¢ = ix,(0) = 0(X¢), where 6 is the canonical
Liouville 1-form on T*M. From Cartan’s formula (1.1) and formula £x/(6r,) = 0
(see Problem 2.4) we get

dPe = d(ix, (0)) = —ix,(df) + Lx (0) = —ix, (w).

It follows from (6.1) that X¢ = J(d®¢) and the G-action is Hamiltonian. Using
again the formula £x/(01) = 0 and Cartan’s formula (1.2), we obtain

Pre ) = dxe x,](0) = Lx(ix, (0) + ix, (Lx,(0))
= X&((I)n) = {‘1)5’(1)77}- O

ExaMPLE 6.1. The Lagrangian

L=1mr?—V(r)
for a particle in R? moving in a central field (see Section 3.2) is invariant with
respect to the action of the group SO(3) of orthogonal transformations of the
Euclidean space R®. Let uy,us,u3 be a basis for the Lie algebra so0(3) corre-
sponding to the rotations with the axes given by the vectors of the standard
basis e1, e, e3 for R? (see Example 2.2 in Section 2.2). These generators satisfy
the commutation relations

[u’uuj] = E’ijk:“fk,
where ¢,7,k = 1,2,3, and €;;; is a totally anti-symmetric tensor, €123 = 1.
Corresponding Noether integrals of motion are given by ®,,, = —M,, where

M, = (r X p)1 = rap3s — 13p2,
My = (r X p)2 = rap1 — 113,
M3 = (r x p)3 = rip2 — m2p1

are components of the angular momentum vector M = r x p. (Here it is
convenient to lower the indices of the coordinates r; by the Euclidean metric on

R3.) For the Hamiltonian
2

p Vv
H - —
2m )
we have

{H,M;} =0.

2The negative sign reflects the difference in definitions of X and Xg.
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According to Theorem 6.9 and Corollary 6.10, Poisson brackets of the compo-
nents of the angular momentum satisfy

{M;, My} = —&45, My,
which is also easy to verify directly using (5.5),

_0fog 0Ofdg
{fag}(pvr)_ 8])87“ 87" ap
EXAMPLE 6.2 (Kepler’s problem). For every a € R the Lagrangian system
on R? with o
L=1mr? 4+ —
r

has three extra integrals of motion — the components Wy, Wy, W3 of the Laplace-
Runge-Lenz vector, given by

w=2ym-
m r

(see Section 3.3). Using Poisson brackets from the previous example, together
with {r;, M;} = —eijxri and {p;, M;} = —ei;xPk, We get by a straightforward
computation,

2H
{Wi, M} = =W and  {W;, W;} = HffijkMka

2

where H = % _¢ is the Hamiltonian of Kepler’s problem.
m T
The Hamiltonian system ((.#,w),H), dim.# = 2n, is called completely
integrable if it has n independent integrals of motion Fy = H, ..., F,, in involu-

tion. The former condition means that dFy(z),...,dF,(z) € T;.# are linearly
independent for almost all x € .#. Hamiltonian systems with one degree of
freedom such that dH has only finitely many zeros are completely integrable.
Complete separation of variables in the Hamilton-Jacobi equation (see Section
5.4) provides other examples of completely integrable Hamiltonian systems.

Let ((#,w),H) be a completely integrable Hamiltonian system. Suppose
that the level set Ay = {z € A4 : Fi(x) = f1,...,Fa(x) = f,} is compact and
tangent vectors JdF1, ..., JJdF, are linearly independent for all x € .#¢. Then
by the Liouville-Arnold theorem, in a neighborhood of .# there exist so-called
action-angle variables: coordinates I = (Iy,...,1I,) € R} = (R5o)" and ¢ =
(@15, n) € T = (R/27Z)" such that w =dI ANdyp and H = H(I1,...,I,).
According to Hamilton’s equations,

OH

I = d ¢ =w;=——,
0 and ¢;=w al,

1=1,...,n,

so that action variables are constants, and angle variables change uniformly,
vi(t) = ¢i(0) + w;t, i = 1,...,n. The classical motion is almost-periodic with
the frequencies wq, ..., wy,.
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PROBLEM 6.1. Let (.#,w) be a symplectic manifold. For z € # choose a
function ¢! on .# such that ¢' (z) = 0 and dgq" does not vanish at z, and set X = X1
Show that there is a neighborhood U of € .# and a function p; on U such that

X(ql) =1 on U, and there exist coordinates p1,q*, 2%, ...,22""2 on U such that
19} 0
X=— and Y =X, = —.
op1 P oq!
PROBLEM 6.2. Continuing Problem 6.1, show that the 2-form w — dp1 A dg' on
U depends only on coordinates z', ..., 2" "2 and is non-degenerate.

PROBLEM 6.3 (Coadjont orbits). Let G be a finite-dimensional Lie group, let g
be its Lie algebra, and let g* be the dual vector space to g. For u € g* let .4 = O,
be the orbit of u under the coadjoint action of G on g*. Show that the formula

w(ur, uz) = u([z1, 22]),

where u1 = ad*z1(u),u2 = ad*z2(u) € Ty, and ad™ stands for the coadjoint action
of a Lie algebra g on g*, gives rise to a well-defined 2-form on .#, which is closed and
non-degenerate. (The 2-form w is called the Kirillov-Kostant symplectic form.)

PROBLEM 6.4 (Symplectic quotients). For a Poisson action of a Lie group G
on a symplectic manifold (.#,w), define the moment map P : .# — g* by

P()(§) = Pe(z), S €9, z €A,

where g is the Lie algebra of G. For every p € g* such that a stabilizer G, of p acts
freely and properly on ., = Pil(p) (such p is called the regular value of the moment
map), the quotient M, = Gp\.#, is called a reduced phase space. Show that M, is a
symplectic manifold with the symplectic form uniquely characterized by the condition
that its pull-back to .#, coincides with the restriction to .#), of the symplectic form
w.

PROBLEM 6.5 (Dual space to a Lie algebra). Let g be a finite-dimensional Lie
algebra with a Lie bracket [, |, and let g* be its dual space. For f,g € C*°(g*) define

{f,9}(w) = w(ldf, dg]),

where v € g* and T, g" ~ g. Prove that { , } is a Poisson bracket. (It was introduced
by Sophus Lie and is called a linear, or Lie-Poisson bracket.) Show that this bracket
is degenerate and determine the center of A = C*°(g").

PROBLEM 6.6. A Poisson bracket {, } on . restricts to a Poisson bracket {, }o
on a submanifold .4, if the inclusion 2 : A4~ — .# is a Poisson mapping. Show that the
Lie-Poisson bracket on g* restricts to a non-degenerate Poisson bracket on a coadjoint
orbit, associated with the Kirillov-Kostant symplectic form.

PROBLEM 6.7. Do the computation in Example 6.2 and show that the Lie alge-
bra of the integrals M, M2, M3, W1, Wa, W3 in Kepler’s problem at H(p,r) = E is
isomorphic to the Lie algebra so0(4), if E < 0, to the Euclidean Lie algebra ¢(3), if
E =0, and to the Lie algebra so(1,3), if E > 0.

PROBLEM 6.8. Find the action-angle variables for a particle with one degree of
freedom, when the potential V' (z) is a convex function on R satisfying lim .0 V()
= oco. (Hint: Define I = § pdz, where integration goes over the closed orbit with
H(p, T) = E)

PROBLEM 6.9. Show that a Hamiltonian system describing a particle in R* mov-
ing in a central field is completely integrable, and find the action-angle variables.



LECTURE 7

Hamiltonian systems with constraints

7.1. First order formalism

As in Lecture 1, consider Lagrangian system (M, L) with the Lagrangian
function L : TM — R. If the Lagrangian L is non-degenerate, by doubling the
number of degrees of freedom, we can replace (M, L) with another Lagrangian
system (M, L), where the Lagrangian function £ : TM — R is linear in gener-
alized velocities.

Namely, consider M = T'M as new configuration space with generalized
coordinates £ and define the Lagrangian £ on T'’M by the following formula

n

(7.1) 55:2

)+ (@) = 9 (d—v) + L(gv).

Here ¢ = (q,v) are standard coordinates' on M = TM, and (£, &), where
& =(q,v), are corresponding standard coordinates on T'M.

LEMMA 7.1. If Lagrangian function L : TM — R is non-degenerate, La-
grangian systems (M,L) and (M, L) are equivalent — corresponding Euler-
Lagrange equations coincide.

PROOF. The Euler-Lagrange equations
doL oL

dtof o€ "
for the Lagrangian system (M, £) reduce to
doL IoC doL oL

Jé
It follows from (7.1) that 90 = 0, and from the second equation in (7.2) we

oL 9L (4—v)— oL 4oL oL  9°L (d4—v)
T v Owdv v v Owdv ’
Since Lagrangian L is non-degenerate, this implies

obtain

(7.3) q=v.

1T avoid confusion, here we do not denote standard coordinates on T'M by (g, q).
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Using (7.1) we can rewrite the first equation in (7.2) as

doL  9*L . oL
(G- v) -~ o
dt 0ov  0qov 0q
Using (7.3), we obtain Euler-Lagrange equations for the Lagrangian system
(M, L),
doL oL

= O
dt dq aq

In general, Lagrangian system (M, £) in the first order formalism is defined
by the Lagrangian function £ : TM — R, which in standard coordinates on
TM is given by

N
(7.4) L, €)= Z H(&),

where H is a function on M and N = dim M. It is also said that Lagrangian £
is linear in generalized velocities. It is associated with the 1-form ¥, on M X R,

N
(7.5) Ve =3 fa(€)d™ — H(g)dt.
a=1

It has the property that for every path v : [to, 1] : M — R,

/ £/ @)t = [ oe.

where +/(t) is a vertical lift of v(¢) to TM and o = {(y(t),t);to <t <11} is a
1-chain on M x R (cf. Problem 1.1 in Lecture 1).

REMARK. In case when M = TM and Lagrangian L is given by (7.1),

Yy =0 — Edt,

oL
where 07, = a—vdq is the 1-form associated with the Lagrangian L : TM — R

oL
(see formula (2.1) in Lecture 2), and E = e L is the corresponding energy
v
(see Sect. 2.1 in Lecture 2).

DEFINITION. Lagrangian £, given by (7.4), is called non-degenerate, if the
2-form

al « al afﬁ « B
=d (D falde™ | = Y STE(€)dE N de
a=1 a,B=1 «

is non-degenerate on M.
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It follows from the previous remark and Problem 2.1 in Lecture 2, that
for Lagrangians (7.1) this definition agrees with the one given in Lecture 1.
If the Lagrangian £ is non-degenerate, it follows from the Darboux theorem
that N = 2n is even and there exist local canonical coordinates (p,q) =
(P1,- -y Pnyq', ..., q") on M such that

Uz = pdq — H(p,q)dt
and the Euler-Lagrange equations for the Lagrangian

L=pgq—H(p,q)
are Hamilton’s equations

,__oH . _0oH
P=-3 175

with the Hamiltonian function H(p,q). This repeats derivation of the Hamil-
ton’s equations given in Sect. 4.2 in Lecture 4, but without explicitly using
Legendre transform.

REMARK. In this case we trivially have

p:a—? and H =pq— L.
oq

7.2. Singular Lagrangians

Here we consider important case when Lagrangian (7.4) is singular. Dar-
boux theorem is still applicable and guarantees existence of local coordinates
(P, @, N) = (P1,-- Py @ s 5@ A1, - oo, Am) on M, where N = 2n + m, such
that

Y = pdq — H(p,q,\)dt + dS

for some (local) function S(p,q,A). Since addition of the exact form does not
change equations of motion (see Problem 1.2 in Lecture 1), the Euler-Lagrange
equations for the Lagrangian £ have the following form

0H OH OH
. ) — — = — d — = U.
(7.6) pP=—%, 975, @ 5y =0
, o*H "
Now suppose that the m x m matrix { ——— has constant rank k on
OXaONy ) g

M. If k = m, it follows from the implicit function theorem that the equations
OH
2N
given by the equations A\, = A\y(p,q), a = 1,...,m. In other words, in this case
it is possible to exclude coordinates A = (A, ..., A). Putting

= 0 in (7.6) determine a submanifold M in M of dimension N —m = 2n,

H(p,q) = H(p,q.\(p,q)) and L =pg— H(p,q),
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we obtain a non-degenerate Lagrangian system (M, £~) whose Euler-Lagrange
equations coincide with the restriction to M of the first two equations in (7.6).
Indeed, we have

aﬁ_(aH 8H8)\>' _OH
M

ap  \op "oxop)ly by
OH _ (0H OHOA\| _ oH
oqg  \dq OXdoq)|y Oq|g

Correspondingly, M is a symplectic manifold with the symplectic form dp A dq
and Hamiltonian H (p, @), and Euler-Lagrange equations (7.6), restricted to M,
become Hamilton’s equations.

In case k < m, by using appropriate change of coordinates A, we can exclude

the first k coordinates A1, ..., A\x (such coordinates are called excludable), while
remaining m — k coordinates Ag41, ..., Ay, satisfy
0’H
=0, a,b=k+1,...,m,
a0, GO RA L m

so that H is linear function of Agy1,...,A;,. Thus from the very beginning we
can assume that M = My x R™, where M has canonical coordinates (p, q)
and symplectic form w = dp A dq, and consider singular Lagrangians on 7'M of
the form

(7.7) L=pg—H(p,q) — Y X" (p,q),

where coordinates A play the role of Lagrange multipliers. The Euler-Lagrange
equations are

) OH &~ . 0p°
7.8 e N Vs
(7.8) P=""%q QZZI 9q
. OH <~ 09
7.9 = — + >\a )
(7.9) = 5, ; 9
and
(7.10) ' (p,q) =0, a=1,...,m.

The functions ¢®(p, q) are called constraints and equations (7.10) determine
0p® O0p°
has rank m on

Op; " Iqt
My, the set My is a submanifold of M of dimensionp2n —qm. Restricting the
1-form ¥, on My x R and using Darboux theorem, we either obtain a non-
degenerate Lagrangian system that corresponds to the Hamiltonian system, or
we get a singular Lagrangian. In that case we repeat the above procedure

a subset My C M. In case when m x 2n matrix (
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and obtain a Lagrangian as in (7.7), and corresponding constraints determine
a submanifold M; of M. Iterating this procedure, in finitely many steps we
obtain a non-degenerate Lagrangian.

At each step of this procedure one needs to solve equations (7.10) in order to
apply the Darboux theorem to the restriction of the 1-form ¥, to the subman-
ifold M. This could be a very difficult problem. However, there is important
class of constraints for which one does need to solve equations (7.10).

7.3. First class constraints and reduced phase space

It seems natural to identify functions on M with the same restrictions on
M. Namely, let Z be an ideal in the algebra A = C°°(M), consisting of

_ . - (09" 0"
functions that vanish on M. Condition that the matrix 90 D has
pi  0gq

constant rank m on M leads to the following result.
LEMMA 7.2. Ideal T is generated by the constraints @', ..., ™.

However, there are two questions one needs to address in order to formulated
consistent dynamics for Hamiltonian systems with constraints.

e Whether trajectories (p(t),q(t)) of the Hamilton’s equations (7.8)—
(7.9) lie on My if (p(0),q(0)) € M.

e Describing the algebra of observables whose evolution does not depend
on the arbitrary parameters A1, ..., Ay, in (7.8)—(7.9).

It is remarkable that, according to Dirac, the affirmative answer to both of these
questions is obtained by using the following definition. Let { , } be the Poisson
bracket on M associated with the symplectic form dp A dq.

DEFINITION. Constraints ¢!, ..., ¢™ for the singular Lagrangian (7.7) are
called first class constraints if {p®, ©*}, {H, 0%} €T, a,b=1,...,m.

In other words, there are functions g2® and h¢ on M such that

(7.11) {e% @'} =D gt and {H,¢"} => hie".
c=1 b=1

LEMMA 7.3. For the first class constraints trajectories (p(t),q(t)) of the
Hamilton’s equations (7.8)—(7.9) lie on My if (p(0),q(0)) € M.

PRrROOF. It follows from (7.8)—(7.9) that
Sba = {H7 (pa} + Z)\b{@ba Soa}a
b=1

and it follows from (7.11) that ¢* = 0 on M. Thus ¢(p(t), g(t)) = ¢*(p(0), g(0))
0,a=1,...,m. U
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In general, according to (7.8)—(7.9), the evolution of arbitrary f € A is given
by

(7'12) f:{Haf}+ZAa{@aaf}a

and it follows from (7.11) that restriction of this equation to Mg does not depend
on the choice of a representative in f mod Z and defines the evolution in the
algebra A/Z. Still, this evolution depend on the choice of arbitrary parameters
A17 e 7/\m-

DEFINITION. Admissible observables are functions f* on M, whose exten-
sions f to M satisfy

(713) {f’@a}‘Mo :07 a:l,...,m.

In particular, H* = H| M, s an admissible observable. It follows from
Lemma 7.2 and (7.11) that (7.13) is valid for any smooth extension f of a
function f* on My. The Poisson bracket of admissible observables is defined by

{f*7g*}0 = {fag}|/\/[0 )

and it follows from (7.13) that admissible observables form a Poisson algebra
A*. For admissible observables equation (7.13) takes the form

(7.14) fr={H" [}
and no longer depends on on the choice of arbitrary parameters Aq, ..., \p,.
Put

Ao={feA: {f,.¢"Hp, =0, a=1,....m
LEMMA 7.4. Ag is a Poisson subalgebra of A: if f,g € Ag, then fg € Ag
and {f,g9} € Ag. Moreover, T C Ay is a Poisson algebra ideal of Ay and
PROOF. Follows from Lemma 7.2, equations (7.11) and Jacobi identity. O

The functions f* € A* depend on 2n—m —m = 2(n—m) and in many cases
can be thought of as functions on the reduced phase space — symplectic manifold
I' of dimension 2n — 2m. This can be described geometrically as follows. Let
Xypa € Vect(M) be the Hamiltonian vector fields corresponding to the functions
©® on M. We have, according to formula (6.3) in Lecture 6,

(7.15) [X¢Q,X@b] :X{¢a’<pb}7 a7b: 1,...,m.

We also have
w(tia7Xgob) = {@aﬂpb},
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so that
Win (Xype, Xpp) =0 forall m e M.

Denote by Y, the vector vector fields X« along M. It follows from (7.10) that
Y, are tangent to Mg and

wlp, Yo, Ys) =0, a,b=1,...,m.

Thus the closed 2-form wy — a restriction of the symplectic form w to Mg —
has an m-dimensional kernel, generated by the vector fields Y, € Vect(My). It
follows from (7.11) and (7.15) that

[qu, wa} = Zgng¢c7
c=1

This means that the vector fields Y7,...,Y}, generated a smooth involutive
distribution on My — a subbundle P of the tangent bundle T M, such that
[X,Y] € Pif X,Y € P. By the Frobenius theorem, M is a foliation with
m-~dimensional leaves given by the integral manifolds of the distribution P.

In case this foliation is a fibration with the base M*, a 2n — 2m dimensional
submanifold of My, we have A* = C°(M*) and the closed 2-form w* — a
restriction of the 2-form wy to M* is non-degenerate! Indeed, equations (7.13)
imply that the functions f are constant along the fibers. Locally, M* can be
defined by the equations

(7.16) Xa(P,q) =0, a=1,...,m,

called additional constraints. Condition
(7.17) det ({xa, ¢"}) 0y #0

guarantees that the submanifold of M, defined by (7.16), intersects transver-
sally the integral manifolds of the distribution P. If intersection of every integral
manifold with this submanifold consists of only one point, equations (7.10) and
(7.16) in M determine the reduced phase space — a 2n — 2m manifold M* with
the symplectic form w* = w| ..

In special case when

(7.18) {XarXp} =0, a,b=1,...,m,

one can easily find canonical coordinates on M*. Indeed, put p, = Xq, ¢ =
1,...,m. By Darboux theorem, there are coordinates ¢* and

(p*,q*) = (p’{, e ’p;n—va (q*)l’ e (q*)2n72m)
such that -
w= dea A dg® + dp* A dq*.

a=1
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Transversality condition (7.17) becomes

D\
det <6qb ) # 0,

a,b=1

so that ¢* = ¢*(p*,q*). Thus the reduced phase space M* is given by the
equations
pa:O7 qa:qa(p*7q*)’ a:]""'7m7
and
w* =dp* Ndq*.
We also have f*(p*,q*) = f(0,p*, ¢*(p*,q*),q*) and
B af* 89* B af* ag*

(7.19) {r",9"}

7.4. Second class constraints and Dirac bracket

Constraints (7.10), for which

det ({¢",¢"}) #0,

are called the second class constraints. In this case m is necessarily even, m =
2k, and the submanifold Mg, determined by equations (7.10) is a symplectic
manifold with a symplectic form wo = w|,, . In this case Poisson bracket { , }o
corresponding to wy is obtained by the following construction. Let Cgp, be the
inverse matrix to ({p%, ¢*}), and let { , } be a Poisson bracket on M associated
with the symplectic form w.

DEFINITION. Dirac bracket { , }pp on M is given by the following formula

2k
(7.20) {f,9Yos = {f,9} = D_ {F,¢"}Cau{¢", g}

a,b=1

It follows from this definition, that for all f € A,
(7.21) {f.o"lp =0, a=1,...,2k

LEMMA 7.5. Dirac bracket is a degenerate Poisson bracket on M whose
center consists of the functions F(¢',...,0?*), where F : R?** — R. More-
over, Dirac bracket restricts to Mg as a non-degenerate Poisson bracket that
corresponds to the symplectic form wy.

It follows from the transversality condition (7.17), that the first class con-
straints ¢* and additional constraints y, can be combined iinto the second class
constraints ¢!, ..., ™ X1,..., Xm. Lemma 7.5 implies

COROLLARY 7.1. Poisson bracket on the reduced phase space M* for the
first class constraints coincides with the Dirac bracket for the associated set of
the second class constraints.
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PROBLEM 7.1. Prove that formula (7.1) gives a well defined function £ on TM.
PROBLEM 7.2. Prove Lemma, 7.2.

PROBLEM 7.3. Prove that the symplectic quotient construction (see Problem 6.4
in Lecture 6) in case p = 0 is a particular case of the Dirac formalism, where ¢ are
the Hamiltonian functions of the Hamiltonian vector fields X¢« associated with a basis
&% of the Lie algebra g.

PROBLEM 7.4. Prove (7.19) by computing Poisson bracket {f, g} on M in coor-
dinates 77 = (pa;p*, Soaa q*)

PROBLEM 7.5. Prove Lemma 7.5.

PROBLEM 7.6. Prove Corollary 7.1.
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Classical gauge theories






LECTURE 8

Maxwell equations

8.1. Physics formulation

The electromagnetic force is a fundamental force responsible for the in-
teraction of electrically charged particles. Particles with positions r, € R3,

a=1,..., N, may carry electric charges e, with the density function
N
p(r) = ead(r —ra).
a=1
In general one considers the charge density — a signed o-additive measure,

which is absolutely continuous with respect to the standard Lebesgue measure
on R3, i.e., a signed measure p(r)d>r. Moving charges produce electric current.
A single charge eg at a moving point 7((t) produces a current

J(r,t) = equ(t)d(r —ro(t)), where wv(t)= drc(;t(t)'

In general, the current density is

j(r’ t) = p(’l‘, t)v(rv t)a

where v(r,t) is a charge velocity at point » € R? at time t.

An electric field E(r,t), where r € R?, is generated by electric charge,
and time-varying magnetic field B(r,t), which is produced by moving electric
charges. They satisfy Maxwell equations, which summarize the basic laws of
electromagnetism. In a free space these equations have the following beautiful
form!

1
(8.1) V-E= P (Gauss law)
0

— the electric flux leaving a volume is proportional to the charge inside;
(8.2) V-B=0 (Gauss law for magnetism)

IWe are using standard notations for the divergence and curl from the multivariable
calculus.
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— there are no magnetic charges, the total magnetic flux through a closed
surface is zero;

oB
(8.3) V x E = 5 (Faraday’s induction law)
— the voltage induced in a closed circuit is proportional to the rate of change

of the magnetic flux it encloses;

OF
(8.4) V x B = uopj + HoSo (Ampere’s circular law)

— the magnetic field induced around a closed loop is proportional to the electric

current plus displacement current (rate of change of electric field) it encloses.
Here the constant ¢¢ is called a permitivity of the free space and the constant

o is called permeability of the free space or magnetic constant. They satisfy

1
Hogo = 2
where ¢ is the speed of light in the free space.? Maxwell equations imply all
laws of the electromagnetism: Coulomb law, Bio-Laplace-Savart law, etc.
It follows from equation (8.2) that there is a vector-valued function A(r,t),
called vector potential, A = (A, Ay, A;), such that

(8.5) B =V x A.
Plugging (8.5) into (8.3) we get

0A
VX(E-F(,%)—O,

so that there is a function (7, t), called scalar potential, such that

8.6 E=-Vo— —.

(8.6) an

Formulas (8.5) and (8.6) solve the first pair of Maxwell equations — equations
(8.2)—(8.3).

8.2. Using differential forms

One can rewrite (8.5)—(8.6) as single equation by introducing the following
four-dimensional notations®. Put z° = ¢t, 2! = z,22 = y,2® = z and consider
four-vectors © € R*, & = (2*), where 4 = 0,1,2,3. Put*

A= A,da,

2In the SI system of units ¢g = 8.85 x 10712C2N~"1m~2, where C = Coulomb and
N = Newton, and pup = 47 x 107"NA~2 A = Ampere. In the Gaussian system of units
(a part of CGS system of units based on centimetre-gram-second) g = ﬁ, no = 477’ and
Ecgs = c 1 Egr.

3No reference to the special relativity yet!

4Here and in what follows we always use summation over repeated indices.
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where Ay = %4,07/11 = —A;, Ay = —A,, A3 = —A,, and consider the 2-form
F = dA. Explicitly,

1
(8.7) F= iFuvdzu Adz¥, where F,, =0,A, —0,A,

0
and 8H:@’ M:O71,2,3.

It follows from (8.5)—(8.6) that the skew-symmetric 2-tensor F),, is repre-
sented by the following 4 x 4 matrix

(8.8) F = ¢

or
1 0 1 1 0 2 1 0 3
F=-FE.dx" Ndx" + —Eydx” Ndx® + —E.dx” Ndx
C C c
—B,da?® A da® — Byda® A dxt — B.da' A da?

The 2-tensor F),, is called the electromagnetic field tensor, or the field strength
tensor or Faraday tensor.

Equation F' = dA gives expressions (8.5)—(8.6) for electric and magnetic
fields in terms of the four-vector potential A,. The first pair of Maxwell equa-
tions — equations (8.2)—(8.3) — directly follow from this representation, and

can be written succinctly as
dF =0,

or, equivalently,
(8.9) OBy +O0Fu +0uFux =0, Ap,v=0,1,23.

Indeed, by an elementary computation we have

1
dF = -V - Bdx' Ada? A da® — <80BI +=(V x E)x> da® A dx? A da®

¢
1 , 1
- <aOBy + =(V x E)y> da® A da® A dat — (8OBZ + =(V x E)Z> da® A dzt A da?.
C C

To rewrite the second pair of Maxwell equations, equations (8.1) and (8.4),
we observe that in the absence of the sources these equations can be obtained
from the first pair (8.2)—(8.3) by the electro-magnetic duality

1 1
-E— —-B and B~ -FE.
c c
Under this transformation F'+— *F', the dual field strength 2-form, given by
«F = —B,dx® A dz! — Bydx0 A dx? — B.dz" A da?

1 1 1
—=E.da® Ndx® — —~Eyda® Ada' — ~E.dx" A da?,
C Cc Cc
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so that equations (8.1) and (8.4) can be written as a single equation
d+F =0.

What is the geometric meaning of the dual 2-form *F'? It is easy to check
that it is a Hodge dual to the 2-form F with respect to the Minkowski metric

ds® = N dat da”

on R*, given by the diagonal 4 x 4 matrix = diag(1,—1,—1,—1)! In other
words, Minkowski metric is a pseudo-Riemannian metric on R*, given explicitly
by

(8.10) ds® = (da®)? — (dz*)? — (d2?)? — (da®)?.

Indeed, let V' be an oriented n-dimensional real vector space with a non-
degenerate inner product ( , ) (not necessarily positive-definite). The inner
product on the vector spaces AFV is defined by

(U A+ Aug,v1 A - Avg) = det({ug, v5)).

Let w € A™V be the unit vector associated with the orientation of V' — an
element in A"V, uniquely characterized by the property that its image is 1
under the isomorphism A"V ~ R. Then for v € A¥V its Hodge dual is a vector
xv € A"7FV | satisfying

uA v = (u,v)w forall ve AV

Applying this definition to the vector space V with the basis dz°, dz!, dz?, da?3
and the inner product (dz*,dx") = n"¥, we get

*(appdat Adx”) = by, dat Ada”,
where

1

buy = isaﬁwnmnﬁp%p

and €485 is totally antisymmetric tensor, eg123 = 1. We have

#(dx® A da') = —da® A da?,

#(dx® A da?) = da' A da®,
#(dz® A da®) = —dat A da?,
#(dx' Ada?) = da® A da®,
#(de3 Nda') = dx® A da?,
#(dx® Nda®) = da® A dat,

and the formula for *F follows from the definition of the 2-form F.
To summarize, Maxwell equations in an empty space (without sources) can
be written succinctly as

(8.11) dFF =0 and dxF =0.
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REMARK. The signs in Maxwell equations, reflected in electro-magnetic du-
ality, forces the use of a pseudo-Riemannian metric (8.10). This may be con-
sidered as an alternative discovery of the Minkowski spacetime, without the
reference to special relativity.

8.3. Maxwell’s equations with sources

We have
d+xF =
1 1
((V x B), — GOEI> da® A da® A da® — ((V x B), — 80Ey> dz® A dat A da®
¢ Yooc
1 1
+ <(V x B), — aOEz) daz® A dat A da? — =V - Edat Ada? A da®.
c c
Define the four-current
J = J,dz",
where Jy = —cp and J; = jg, Jo = jy, J3 = j.. Using
#(da® A da® A da®) = dat,
#(dz® A da' A da?) = —da?,
#(da® A dat Ada?) = da?,
#(dxt A dx? A da®)

we can succinctly rewrite equations (8.1) and (8.4) as
xdx F' = pgJ.
Equivalently, since *> = —(—1)* on the space of k-forms on R*, we have
d*x F = pg*J,
so that d x J = 0, which is a continuity equation. Using that
wdx’ = dzt Adx® A da®,
sdrt = da® A da? A da®,
sdx? = —dz® A dxt A da?,
wdr = da® Adat A da?,
we can rewrite it as follows

aJH
- = W B phv
i 0, here JH =n""J,.

Explicitly, the continuity equation has the form

ap

vV.j—o0
TV
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REMARK. If J has compact support or is of rapid decay, the continuity
equation leads to the total charge conservation. Namely, let

Q(t):i/ *J:/ p(t,r)dr
C J{ct}xR3 R3

be the total charge at time ¢. Then it follows from Stokes’s theorem for M =
[cty, cta] x R? that

O:/Md*J:/aM*J:Q(tg)—Q(tl).

Also for any compact 3-manifold V' C R? we have

)
— t,rd3r:—/ 4 -dsS.
o Vp( ) -

It is also convenient to introduce the tensor
PR = P g,

which has the the same form as F),,, where E is replaced by —E. It is related
to the dual strength field tensor by

1
(+F)p = ~€wapFP.

2

Then the second pair of Maxwell equations can be written in the following form

(8.12) O F™ =J", v=0,1,2,3,

which is often used by physicists.
To summarize, the Maxwell’s equations on R* have the following form

(8.13) dF =0 and xdxF =J,

where the 4-current J satisfies the continuity equation. By Poincaré lemma, the
first equation has a solution

F=dA where A= A,dx".

Upon the identification Ay = %go and (A1, Az, A3) = —A we get expressions
(8.5) and (8.6) for the magnetic and electric fields in terms of the vector and
scalar potentials A and ¢. Maxwell’s equations are invariant under the gauge
transformations

A A+ df,

where f is a smooth real-valued function on R*.
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8.4. The principle of least action

The Maxwell equations (8.13) can be obtained from the principle of least
action.

Namely, let A = Q'(R*) be a vector space of smooth (C*) real-valued 1-
forms A = A,,dz* on R?* such that corresponding 2-forms F' = dA have compact
support (or decay sufficiently fast as |x| — 0o0). Let J be a smooth real-valued
1-form on R* with compact support (or decaying sufficiently fast as |z| — oo)
satisfying the continuity equation. Define the action functional S : A — R by

(8.14) S(A):—%/(F/\*F—i—QA/\*J),
vy
R4

where F = dA.

PROPOSITION 8.1. The critical points of the action functional S(A) are given
by the Mazwell equations.

PrROOF. For given a € A put

We have, using the symmetry property of the Hodge star operator
(8.15) aAxf =L Ax*a

and the Stokes theorem,

5S(A) = _% /(da/\ «F +anx)
]R4

1 1
:_%/(a/\d*F-i—a/\*J)—%/d(a/\*F)
R4 R4

1
R4

Whence 05(A) =0 for all a € A yields
d«F=—-—xJ [O

REMARK. As in Sect. 1.2 in Lecture 1, one can consider a vector space
A[ﬁ;i;] of real-valued 1 forms A = A, dz" on [cty, ct1] x R? satisfying A,,(cto, ) =
A (r) and Ay (cty,7) = Al (r). It follows from the above computation using the
variations with fixed ends that critical points of the functional

1M
- / (F A*F +2A A J)d>rdt
471- to R3

are given by the Maxwell equations.
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REMARK. In physics notation,

S(A) = / (z(A) - ;ﬂAMJ“) dx,

]R4
where
(8.16) LA = ——p = (Lp_pe
' 16 M 8w\ 2

is the Lagrangian function of the free electromagnetic field.



LECTURE 9

Electrodynamics as U(1) gauge theory

Electrodynamics — theory of electromagnetism, described by Maxwell equa-
tions — is a gauge theory with the symmetry group G = U(1). To explain this
fundamental fact, and to formulate the gauge theory with arbitrary compact
symmetry group G — the celebrated Yang-Mills theory — one needs to use dif-
ferential geometry of principal and vector bundles. It is succinctly summarized
below.

9.1. Bundles, connections and curvature

Let G be a Lie group and M be a smooth manifold. A principal G-bundle
over X is fiber bundle 7 : P — M with the smooth right G-action

PxG>(pg)—p-geP
which preserves the fibers and is free and transitive. By definition, there is an

open covering M = Uae 4 Uq such that over each U, there is a local trivializa-
tion, a diffeomorphism

o : T HUy) = Uy x G

such that
(o (x,9)) =2 and o ' (x,9) = ¢, (x,e)-g forall zeU,, g€a,
where e is identity in G. Putting
Aag = a0 05" Uap X G = Uap X G,
where Uys = U, N Ug, introduces transition functions tn5 : Usg — G by
Aap(2,9) = (2, tap(@)g)-

The transition functions satisfy

(9.1) tap =tgn on Usp
and
(9.2) taplgytya =€ on Uygy =U,NUgNU,.

83
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Conversely, a principal G-bundle P can be defined by transition functions,
maps tog : Usg — G, satisfying (9.1)—(9.2) by

(9.3) P=||(0.xG)/~,

a€cA

where (z,g) ~ (y,h) if and only if x =y € Uy, and g = top(x)h. Transition
functions t,g and f;'t.sfs, where f, : U — G, are arbitrary smooth functions,
define the same bundle P. Sections of P over U C M are the maps s : U — P
satisfying m o s = id|,;. They are determined by the maps s, : Uy — G,
satisfying

(9.4) Sg = Satap on Uayg.

The gauge group G(P) of a principal G-bundle P counsists of bundle isomor-
phisms f : P — P that commute with right action. Such f can be uniquely
written f(p) = p- f«(p), where a function f,. : P — G satisfies

fi(p-g) =g 'f(p)g forall peP, geq.

Elements of the gauge group G(P) are collections {f4}aca of arbitrary smooth
functions f, : U, — G that map sections to sections by the formula s’ = so f.
Explicitly,

S =8afa Uy — G,

and s], satisfy (9.4) with the transition functions

t:xﬁ = f;ltaﬁfﬁ'

With every representation R : G — GL(V) of a Lie group G in a complex
vector space V there is a vector bundle £ — M of rank n = dim V', associated
with a principal G-bundle P — M. It has fiber V' and the structure group G,
as is defined as a quotient

(9.5) E=(PxV)/qG,
where the right G-action is given by
(p,v)-g=(p-g,R(g"")v), peP,veV.

Equivalently, a vector bundle £ — M can be defined by the transition
functions g,g. Sections of E over U C M are the functions s, : Uy — V,
satisfying

(9.6) Sa = gapsg on  Uyg.

If a vector bundle ¥ — M is associated with a principal G-bundle P — M
through a representation R : G — GL(V), then go3 = R(tas)-

Denote by Q°(E) the sheaf of smooth sections of a vector bundle E and by
QY(E) — a sheaf of 1-forms on M with values in E — a sheaf of smooth sections
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of E® T*M — M. Connection' on F is a linear map V : Q°(E) — QY(E)
satisfying the Leibniz rule

(9-7) V(f¢) =df ® ¢+ f(VC)

for all sections ¢ € Q°(E)(U) and functions f € C>(U), U C M. Connections
can be thought of as a way of differentiating sections of E.

In terms of transition functions g.s of the bundle E, connection V is a
collection {d+ Ay }aca, where d is the de Rham differential and A, are End V-
valued 1-forms on U,, satisfying the transformation law

(9.8) Ao = 9apApgas — d9asdns o0 Uap.
Indeed, if s, satisfy (9.6), then V-valued 1-forms on U,

(9.9) Vsq = (d+ An)sa

satisfy Vso = gagVsg on Uyg if and only if

(d+ Aa)(9apsp) = dgapss + Gapdss + Aagapss

and
gap(d+Ap)ss = gapdss + gasApss
are equal for all 55|Uag’ which is equation (9.8). Notation V4 = d + A we will

used sometimes.
In local coordinates x',..., 2" on a chart U C M,

Vs=V,(s)dz*, where V,=0,+A4, and A= A,dz".

Operators V,, are called covariant derivatives.

REMARK. In physics literature the notation V,, = 0, + ieA, is customary
used, where e is the elementary charge — the magnitude of the electron charge
—e. In quantum field theory the electromagnetic field describes photons, the
exchange particles ‘of light’ for the electromagnetic interaction.

If a vector bundle £ — M is associated with a principal G-bundle P — M
through a representation R : G — GL(V'), denote by p = d. R the corresponding
infinitesimal representation — a representation of a Lie algebra g in End V.
Connections V on E with the symmetry group”? G have the property that A,
are 1-forms on U, with values in p(g).

Connections V form an affine space A(F) over the complex vector space
QY (M, End E) of End E-valued 1-forms on M. Here End E = E ® E*, where
E* is a dual bundle to F, is an endomorphism bundle of F with the transition
functions gas ® g5, where g} 5 = (gtﬁ)_l. The gauge group G(F) consists of

[e3

IHere we use a definition that does not use a notion of a connection on a principal
G-bundle.

2Such connections are obtained from connections on a principal G-bundle P.
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maps ¢ = {¢a : Uy — EndV}aea, and it acts on A(E) by A% = {A%},ca,
where

(9.10) A? = poAndyt —ddaoyt on U,.

Connection V4 on a bundle E determines a connection VE™E on the bundle
End F,

(9.11) VEdE s = dsq + [Aa, Sal,
where s, : U, — End V satisfy
So = gagsﬂg;g on Uyg.
A linear map V : Q°(E) — Q!(E) satisfying (9.7), by Leibniz rule extends

to a map QF(E) — QF1(E), which we continue to denote by V. Explicitly, it
is determined by

VW ®¢) =dp @+ (=) AV,
where ¢ € QO(E)(U) and ¢ € QF(M)(U). In particular, for the map

V2:Q%E) = Q*E)
we obtain

V2(f¢) = V(df @ ¢+ fVC)
= —df AV(+df ANVCH fVC = fVPC

This means that V2 : Q°(E) — Q?(FE) is determined by a 2-form F on M with
values in End E — a global section of the bundle A’°T*M ® End E — by

V280 = Fuso on U,.
In terms of the transitions functions,

V254 = (d+ Au)(dse + Ausa)
=dAosa — Ag Ndsq + Aqg Ndse + Ao N AnSa
= (dAq + Ao N AL)Sa,

where A, A\ A, is understood as a product in End V' together with the usual exte-
rior multiplication. Thus End E-valued 2-form F on M is a collection {Fy, }aca
of End V-valued 2-forms on U,,

(9.12) Fo,=dA, + Au N Ay,
satisfying

(9.13) Fo=9gapFsgn; on Uas.
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Transformation law (9.13) follows from (9.8)—(9.12). We will often use notation
F=FA)=dA+ANA.

If a vector bundle £ — M is associated with a principal G-bundle P over M
through a representation R : G — GL(V), corresponding 2-forms F, on U,
take values in p(g), where p = d.R. It follows from (9.10) that the action of the
gauge group G(E) on F is given by F — F?¢, where

(9.14) F? = ¢poFatrl on U,.
In local coordinates z',..., 2" on a chart U C M,
1 y 0A, O0A
F= iF#,,dx“ Adz¥, where F,, =[V,,V,]= i WS + A, A

and [4,, A, = A, NA, —A,NA,. Tt follows from (9.11) that curvature satisfies
the Bianchi identity,

(9.15) VEME(FY = dF + ANF - FAA=0,
which we will simply write as V 4 F = 0. It can also be obtained from the Jacobi

identity
Vi, Vul, Vol + [V, Vo |, Vil + [Vo, V], Vo] = 0.

REMARK. In general, for B € QF(M,End E) we have
VEME(B)=dB+ AAB— (—-1)*B A A.

Let @ : End V — C be a homogeneous polynomial of order k, invariant under
the adjoint action of GL(V) on End V,

®(B) = P(gBg™") forall B€EndV and g€ GL(V).

It follows form (9.13)
O(F,) = ®(Fp) on Uyg,

so that ®(F) € Q?*(M). The Chern-Weil theory establishes the following facts.

1. The 2k-form ®(F) on M is closed,
d®(F) = 0.
2. Cohomology class
[@(F)) € H*"(M)

does not depend on a choice of a connection d + A in a vector bundle
E.
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3. A map
O — O(F)

is a homomorphism of a commutative algebra of invariant polynomials
on End V into the commutative algebra HV°" (M) of differential forms
of even degree on M.

The map ® — ®(F) is called Weil homomorphism, and cohomology classes
[®(F)] — characteristic classes of a bundle E, associated with the invariant
polynomial ®. Let P’ be elementary invariant polynomials of degree i =
1,...,n, defined by

det(B+tI) =Y _ P"*(B)t*.
k=0

(/-1
Forms ¢;(F") = P* (2F ) are called Chern forms, and corresponding co-
s

homology classes — Chern classes. It is a fundamental fact in the theory of
characteristic classes, that

ci(E) = {Pi (éfF)} € H*(M,Z), i=1,...,n,

where H?(M,7Z) stands for the Cech cohomology with coefficients in the con-
stant sheaf Z.

9.2. Line bundles and Maxwell equations

Let L — M be a complex line bundle over an n-dimensional manifold M
associated with a principal U(1)-bundle P over M. Let {U,}aca be an open
cover of M and let gog : Uy N Uz — U(1l) be a transition functions for L,
satisfying the cocycle condition

Jap9py = Gary o0 Ua NUs NU,.

A unitary connection V — connection with symmetry group U(1) — is given
by

(9.16) V=d+ A,

where A, € QY(U,) are 1-forms on U, with values in the Lie algebra u(1) ~
v —1R of the Lie group U(1), satisfying

Ao = Ag — g 3dgas on U, NUp.
Corresponding curvature 2-form F = V? is a global 2-form on M given by
F=dA

and is a closed form, dF = 0.
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Suppose that M carries either Riemannian or pseudo-Riemannian metric
ds?, and let * be the corresponding Hodge star operator. As in Sect. 8.4 in
Lecture 8, consider the functional

1
(9.17) S(A) = —— | FA«F,
v/

defined on the affine space A of unitary connections on the line bundle L. In
case M is non-compact it is assumed that connection V = d + A is such that
integral (9.17) with F = dA is convergent. As in Sect. 8.4, the critical points
of the functional S(A) are given by the equations

(9.18) dF =0 and d+F =0.

In case M = R* with the Minkowski metric, and L = R* x C is a trivial line
bundle, these equations are Maxwell equations (8.11) in empty space”.

The functional S(A) is invariant under the action of a gauge group G(L) and
defines a gauge theory with the symmetry group U(1). Corresponding equations
of motions are given by (9.18), and in case when M is a four-manifold with the
metric ds? of the signature (4, —, —, —), generalize Maxwell equations (8.11) in
empty space to a ‘curved’ spacetime.

9.3. Self-duality equations

In the Riemannian case equations (9.18) do not have physical interpretation.
However, in case when M is compact Riemannian 4-manifold, they have extra
mathematical structure, which will be very important for non-abelian gauge
theories. Namely, in this case the first Chern form of the line bundle L with
connection V is

VT

c1(L,V) = 5 F ci(L) = [ei(L, V)] € H*(M, 7).

Due to the isomorphism

cosf sinf
sinf cosf

U(1) 3 e? (_ ) € S0(2),

for a complex U(1)-line bundle L there is a real rank 2 vector bundle £ over M
with the symmetry group SO(2). Its first Pontryagin class py(£) € H*(M,Z) is
given by

p1(L) = —2(L®C),

where £ ® C is a complexification of the real bundle £ — rank 2 complex vector
bundle over M, and cp(£ ® C) is its second Chern class. It is easy to see
that LR C ~ L & L, where L is the line bundle with the transition functions

3Note that if A = Audz# is a real-valued 1-form on M = R*, used in Sect 8.2 in Lecture
8 in case L is a trivial line bundle, then in (9.16) we have V =d + /-1 A.
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1
Gap, 50 that co(L ® C) is represented by the differential form 4—2F A F. The
™
corresponding first Pontryagin number is
1
=—— / FANFeZ.
4 M

In case when M is a Riemannian manifold with the metric ds?, then the
Maxwell’s equations on M have the form

dF =0 and d*F =0,

where F' € Q?(M,+/—1R) and * is the Hodge star of the metric ds®. They
characterize curvature forms F' as harmonic 2-forms. Since in the Riemannian
case *2 = 1 on 2-forms, and we have a decomposition

(9.19) Q*(M,V-1R) = Q3 (M,V—1R) ® Q* (M, V-1R)

according to the eigenspaces of the Hodge *-operator corresponding to the eigen-
values 1 and —1. The 2-form F on M is called self-dual or anti-self-dual, if
F e Q3 (M,v/—1R) or F € Q% (M,+/—1R) respectively,

= +F.

b1

Correspondingly, connection V = d + A on a U(1)-line bundle L is called self-
dual or anti-self-dual, if its curvature 2-form F' = dA is, respectively, self-dual or
anti-self-dual. Curvature forms of self-dual or anti-self-dual connections satisfy
Maxwell’s equations on a Riemannian 4-manifold M automatically!

From the inequality
— / wAxw >0
M

for all w € Q?(M,+/—1R), we get for a curvature 2-form F of a line bundle
L— M,

—/ F/\*F—47r2p1:—/ FA*F+FAF
M M

1
~3 /M(F —*F)A*(F —xF) >0

and

—/ F/\*F—i—47r2p1:—/ FA*F —FANF
M M

:_1/(F+*F)A*(F+*F)20.
2 /m

Thus we obtain the inequality
S(A) Z 7T|pl | )

where the absolute minima of the action are given by the self-dual connections
in case p; > 0, by the anti-self-dual connections in case p; < 0 and by both
these types in case p; = 0.
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REMARK. In the pseudo-Riemannian case %2> = —1 on 2-forms and analog of

decomposition (9.19) is valid only for complex-valued 2-forms. Corresponding
self-duality equations take the form

' =+vV—-1F
and have no solutions in Q?(M,/—1R). in other words, these equations have

only “non-physical” solutions.

PROBLEM 9.1. Find local trivializations for a vector bundle defined by (9.5) and
show that in this case definition (9.7) reduces to (9.8).

PROBLEM 9.2. Show that property 1 follows from the Bianchi identity (9.15).

PROBLEM 9.3. Prove property 2. (Hint: given two connections Vo and Vi on
E, consider a homotopy V; = (1 — )V + tV1).

PROBLEM 9.4. Prove that for every closed 2-form F' on a compact manifold M
with the property
{—”ZAF} € H*(M,7),
s

there is a line bundle L — M and a connection V = d + A such that F' = dA.






LECTURE 10

Yang-Mills theory

Here we consider the case when G is compact, connected, semi-simple Lie
group.
10.1. Yang-Mills equations

Let E — M be a complex rank r vector bundle over an n-dimensional
manifold M, which may be considered as a vector bundle with a non-compact
symmetry group G = GL(r,C). There is a natural bundle map of the bundle
End F — the endomorphism bundle of £ — to the trivial line bundle over M,
given by the trace map tr: End V' — C in the fibers. Explicitly,

EndV=VeV'3vQuw—trlv@w)=w) € C.
This determines a map
(10.1) QP(M,End E) ® Q4(M,End E) 3 w; ® wy > tr(wy Awsy) € QPTI(M).

NamGIY7 1f w1 = wl ® Cl, Wy = wQ ® CQ’ Where 1/}1 c QP(M>7 '(/12 c Qq(M) and
C1,¢ € Q°(M,End E), then

tr(wy Aws) = tr(C1le) Y1 Atho.

A choice of a Riemannian or pseudo-Riemannian metric ds? on M defines
a Hodge star operator on the algebra Q°*(M) of differential forms on M. Tt
extends to the operator

*: QP(M,End E) —» Q"7 P(M,End E)
by
YR =xp ¢, P eQP(M), (e Q(M,EndE).
Denote by @/ the affine space of connections on E.

DEFINITION. A Yang-Mills action functional S : o/ — C is given by

1
(10.2) S(A):—4— tr(FAXF), F=dA+ANA, Ac dg.
T Jm
If manifold M is non-compact, we assume that connections A are such that
the integral in (10.2) is convergent (e.g., F' has compact support). It follows
from (9.14) that the functional S is invariant under the action of a gauge group
% with the symmetry group GL(r, C).
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PRrROPOSITION 10.1. The critical points of the Yang-Mills action functional
are given by the solutions of the Yang-Mills equations

(10.3) VAF =0 and VaxF=0.

PROOF. The first equation is just a Bianchi identity (9.15) in Lecture 9,
while derivation of the second equation repeats the proof of Proposition 8.1 in
Lecture 8. Namely, for a € Q'(M,End E) we have

F(A4a)=F(A)+da+ANa+aNA+aNa
=F(A)+Vaa+aAa.

Whence using the cyclic property of the trace, formula (8.15), Leibniz rule
dlan*F)=da ANxF —aANd*F

and Stokes theorem, we obtain

d

65(A) = —

S(A + ca)

e=0

1
=—— [ tr((da+ANa+aNA)AXF+FA*x(da+ANa+aAA))
T JM

1
=—— [ tr((da+ANa+anA)AxF)
T JM

1
=—— [ tr(aA(d*xF+AAxF —xFAA))
2T M

-1 tr(a AVaxF). O
2T Jur

Suppose that the vector bundle E is associated with a principal G-bundle
P over M through a representation R : G — GL(V) of a compact Lie group
G. When representation R is unitary with respect to Hermitian inner product
in V, restriction of the Yang-Mills functional to the connections <7 with the
symmetry group G gives a functional taking non-negative values. Indeed, in
this case p(g) consists of skew-Hermitian endomorphisms V', and

—trB>>0 for B=—-B*cEndV,

where * stands for the Hermitian conjugation.

Another important example is when a real vector space V = g and repre-
sentation R is given by the adjoint action Ad of G on g. A Lie algebra g carries
Ad-invariant symmetric bilinear form — the Killing form — given by

<:177y> = 7tr(adm ady)a T,y € g,

where ad,, € End g is given by the adjoint action, ad,(y) = [z,y]. The Killing
form defines positive-definite inner product if and only if a Lie group G is
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compact and semi-simple. Corresponding Lie algebra g of a semi-simple Lie
group G is characterized by the property that there is a basis z1,...,z, of g,
such that in the adjoint representation the n x n matrices X, = ad,, satisfy

(10.4) tr(XoXp) = —20qp, a,b=1,...,n.

Equivalently, there is a basis x1,...,x, of g such that corresponding structure
constants £¢,,

n
[Ta, zp] = Z tapTe,
c=1

are totally anti-symmetric. In case g = su(2) such basis in the defining two-
dimensional representation is given by the matrices

C1(0 1 10— 110
=901 0) 25 o) =5 \0-1)

where tq5. = t, is totally anti-symmetric and £123 = 1. Corresponding matrices
X1, X, X3 in the adjoint representation of su(2) are given by (see Example 2.2
in Lecture 2)

0 0 0 0 0 1 0 -1 0
X;=[0 0 —-1|], Xo=| 00 0], Xs=(1 0 o0
0 1 0 -1 0 0 0 0 0
and
(x,y) = —4trc (wy).

The real vector bundle associated with a principal G-bundle P through the
adjoint representation of a Lie group G on its Lie algebra g is called an adjoint
bundle and is denoted by ad P. In case when (M, ds?) is a Riemannian manifold,
the Killing form defines on QP (M, ad P) an inner product

(10.5) (w1, ws) = /M@J1 Akwn)

with the L2?-norm
ol = [ (o nxa).
M
The symmetry
(106) (wl, (.UQ) = (LL)Q, wl)

follows from (8.15) in Lecture 8 and the cyclic property of the trace. The Yang-
Mills functional is the L?-norm of the curvature form F(A) € Q*(M,ad P),

S(4) = - IF(A)>
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In physics applications M is a four-manifold with pseudo-Riemannian metric
of signature (+,—,—, —) and E = ad P for some principal G-bundle P, where
G is compact semi-simple Lie group. Of special importance is the case M = R*
with Minkowski metric, and ad P = M x g. Introduce of A = A, dz* and

04, 0A,

oo~ o T A

1
(10.7) F = gFm,dx“ Ndz”, Fp, =
where! Ay = AL Xa, Fl = Fi, X, € g and generators X, satisfy (10.4). Corre-
sponding Yang-Mills functional (10.2) takes the form

(10.8) S(A) ! /(Fuy,F“l’)d“a::fi
R4 8

= — Fe (F® uud4
167 /W o (F) d

where F'* = (F*)" X,, and Yang-Mills equations (10.3) become

Frv
(10.9) V, FH = 8axu +[Ay, F*] = 0.

Yang-Mills equations (10.7) and (10.9) generalize U(1)-invariant Maxwell equa-
tions to the case of non-abelian symmetry group G. In terms of the components
equation (10.9) takes the form

(P

—gm th AL (FO)" =0,

where ¢, are totally anti-symmetric structure constants of g.

REMARK. In physics one uses V,, = 9, — gA,, for the covariant derivative,
where ¢ is a coupling constant of the theory. In Quantum Chromodynamics
(QCD) on considers G = SU(3) in the adjoint representation, and corresponding
components AZ(:JU), a=1,...,8, are the gluon fields; corresponding quark fields
are in the fundamental representation of SU(3). In our notation gluon part of
the QCD Lagrangian is

1

(1010) X(A) = _@ ;;V(Fa)#u7

where Fy,, plays the role of gluon field strength tensor. Corresponding elemen-

tary particle — a gluon (or gauge boson) — is the exchange particle for the
strong force between quarks. In the Standard Model of electroweak and strong
interactions one uses the symmetry group G = SU(3) x SU(2) x U(1).

10.2. Self-duality equations

In the Riemannian case Yang-Mills equations do not have direct physical
interpretation. However, in case when M is compact Riemannian four-manifold,
these equations have a fundamental mathematical significance.

IHere summation over repeated indices is understood.
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Recall that the first Pontryagin class of a real vector bundle ad P over M is
defined by §
pi(ad P) = —cy(adcP) € HY(M,7Z),

where adcP = ad P ®g C is a complex vector bundle. Since ¢;(ad¢P) = 0, it is

1

easy to see that ca(adcP) is represented by the differential form 3.2 tr(FAF),
™

and the corresponding first Pontryagin number is

p1 = tr(FAF) € Z.

T 2
8’/T M
In case when M is a Riemannian four-manifold with the metric ds?, we have
a decomposition

(10.11) Q*(M,ad P) = Q% (M,ad P) @ Q% (M,ad P)

according to the eigenspaces of the Hodge star operator * corresponding to
the eigenvalues 1 and —1. Since operator % is symmetric with respect to inner
product (10.5) in Q2(M,ad P), these subspaces are orthogonal. Equivalently,
for F = F, + F_, where Fy € Q% (M,ad P),

(ProFo) == [ (PenF) == [ (P napy) = —(P-.Fy),

and it follows from (10.6) that (F},F_) = 0.
The curvature F € Q%(M,ad P) is called self-dual or anti-self-dual, if F' €
02 (M,Q*(M,ad P)) or F € Q2 (M,Q?(M,ad P) respectively,

* = +F.

Correspondingly, connection V = d + A on a real vector bundle ad P is called
self-dual or anti-self-dual, if its curvature is self-dual or anti-self-dual. Curvature
forms of self-dual or anti-self-dual connections satisfy Yang-Mills equations on
a Riemannian four-manifold M automatically!

Using the orthogonality of F; and F_, we obtain

S(4) = L IFAIE = o= (IF P + 17 P)

4
and
1
pi=—cy [ 6P+ F)A (P + )
™ JMm
1
2—8?(1:++F—’F+—F—)

1
= —53 (P = - 1) -

From here we obtain the inequalities

1 1
S(A) = 2mp1 2 S| Fell? and S(A)+27p1 > —|IF- .
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Thus we see that the absolute minima of the Yang-Mills action on <5  are
given by the self-dual connections in case p; > 0, by the anti-self-dual connec-
tions in case p; < 0 and by both these types in case p; = 0. Number p; in
called the instanton number. Solutions of the self-dual Yang-Mills equations for
M = S* and G = SU(2) in case p; = k > 0 form he instanton moduli space
My, a smooth manifold of dimension 8k — 3.

10.3. Hitchin equations

Let G be a compact real form of a complex Lie group, and denote by *
corresponding anti-involution on a complex Lie algebra gc = g ®g C. Consider
the self-duality equations in a trivial bundle ad P over R* with Euclidean met-
ric. Corresponding connections are g-valued 1-form A = A,d" on R* with the
curvature 2-form

1
F= §Fuydx" Ndx”, F,, =0,A, —0,A,+ AL Al
The self-duality equations F' = xF' take a simple form
Fio = F34, Fi3=Fy, Fi1q=Fo3.

Suppose that A, do not depend on variables z* and z*. Introducing the so-
called Higgs fields — g-valued functions ¢1 = As, ¢ = A4 on R? — we can
rewrite the self-duality equations as

Fia = [¢1, ¢2] = F,
Fiz = [V1,¢1] = [¢2, V1] = Fua,
Fiy = [V1,¢2] = [Va,¢1] = Fas.
Let
F =Fi5 = 01As — 02A1 + [A1, Ag)

be the curvature form of a connection d + A;dz! + Asdz? on a trivial ad P
bundle over R?. Introducing the complex Higgs field ¢ = ¢1 — /—1¢», the
above equations can be written as

V-1
2
Put z = 2! + /=122 and introduce

®=21pdz € Q"°(C,adcP), @ =1¢pdze Q¥ (C,adcP).

(10.12) F= [p,6*] and [V 4 V—1Va,¢] = 0.

Introducing connection 1-form
A= Aydz' + Ayda® = AM0dz + A% dz
in the complex vector bundle adc P over C, we can rewrite equations (10.12) as
(10.13) F +[®,9%] =0,
(10.14) 94 = 0.
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Here
[, ] =PADP* + D" ND

is a graded Lie bracket on adcP-valued 1-forms, and 94 is a (0, 1)-component
of
Va=0+ AYOdz + 0+ A%z = o4 + 5,4.

It is remarkable that equations (10.13)—(10.14) make sense over a Riemann
surface M! Namely, consider a principal G-bundle P over M, a connection A
in the adjoint bundle ad P and the Higgs field ® € QY(M,adcP). The pair
(A, @) satisfies self-duality equations over a Riemann surface M, if

(10.15) F(A)+[®,®*]=0 and 0.® =0.

The second equation states that ® is a holomorphic section of the complex
vector bundle ad P ® Q1°(M, C) with respect to the complex structure in adc P
determined by the Cauchy-Riemann operator 04 = 0 + A%! and the natural
complex structure in Q9(M,C). Solution (A, ®) of the self-duality equations
(10.15) determines a flat complex connection d + A + ® + ®* on adcP.






LECTURE 11

Electromagnetic waves in a free space

11.1. Energy-momentum tensor

Suppose that F' satisfies Maxwell equations without sources. Using equations
(8.9) and (8.12) we have

0 OF OFHv OF,
I (F vy = L g O 9O
(i ) Oz + Oz Oz

F,u.l/
Ox™
=2 (aFa’"‘ + aF”“) FH = —4i(FmF“").

ox? Oz Oz

Thus 9 5

—(F, F*") = —4—(F, o, F"),
axa ( H ) 8$ﬁ ( )

and introducing

1
To[? = FI/aFﬂV + ZagFMVFIWa
we can rewrite this equation as a conservation law

oT?

(11.1) o

0, a=0,1,2,3.

The tensor T is traceless T2 = 0 and symmetric, 7% = T8 where
174 1 « v

(11.2) 7% = T8 = —n,, FOHFP + 77 PR FM.

The tensor T%? is called the energy-momentum tensor. Its components contain

the energy density

1/1
TOO — 5 (02E2 +B2)

and the momentum density
. , 1
7% = FOkpik — _(E x B);, i=1,2,3.
c

The vector S = E x B is called the Poynting vector.

REMARK. The conservation law (11.1)

8T00
o~ VS

101
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can be verified directly using Maxwell’s equations and the calculus formula
V-(axb)=b-(Vxa)—a-(V xb).
It also implies that implies that the total energy of the electromagnetic field
1

= — TOBr
AT J ety xms
does not depend on time.
11.2. Gauge fixing
Maxwell equations in the empty space

(11.3) dF =0 and dxF =0

describe harmonic 2-forms on R%. Their general solution is given by F = dA,
where

(11.4) xdxdA=0.

This equation is not hyperbolic: if A € Q!(R?*) is a solution then A + df for
any smooth function f on R?* is also a solution. However, one can impose an
additional condition

(11.5) dx A =0,
which turns (11.4) into the hyperbolic equation
OA =0,

where
O=dsxdx+xdxd

is the D’Alambertian — the Laplace operator of the Minkowski metric on R*,
acting on 1-forms. In terms of A = A, dz* equation (11.5) becomes

0

(11.6) 0,A" =0, where 0, = o

and is called the Lorenz' gauge condition. Since equation (11.4) can be written
as

O F* =0, where FM =09lrA” —9"A!
(see (8.12) in Lecture 8), we readily obtain that in the Lorenz gauge

OA* =0, p=0,1,2,3,

INamed after Danish physicist and mathematician Ludvig Lorenz, not to be confused
with Dutch physicist Hedrick Lorentz!
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where

For every A € Q'(R*) there is a gauge equivalent 1-form A/ = A + df
satisfying the Lorentz condition. Indeed, (11.5) gives

xdxdf = —*xdx* A.
Using (11.6), for the function f we get the hyperbolic equation
Of = —0,A".

REMARK. Maxwell equations with sources in the Lorentz gauge have the
form

OAx = J*H.

The Lorenz gauge is not unique: if A satisfies (11.6), so does A/, where
Of = 0. In free and empty space one can make a unique choice by imposing
Ag = 0. In general, this gauge condition is called Hamilton gauge. Together
with Lorenz gauge it yields the Coulomb gauge,

(11.7) V-A=0.

Indeed, we can always make Ay = 0 by using A/, where dyf = —Ag. The
remaining gauge transformations preserving Ay = 0 are of the form A — A+dy,
where y is independent of 2°. In the free and empty space p = 0 and since
» =cAp =0, it follows from equation (8.6) in Lecture 8 that

0
0=V-E=—-——(V-A
SV,
whence V - A does not depend on ¢. Determining x from the elliptic equation
2 2 2
Ax=-V-A, where A:V.V:i+a 9

022 "o T o2

we arrive at (11.7). Not that in the free and empty space in the Coulomb
gauge we also have Ay = 0. In the presence of electric charges Coulomb gauge
condition is
~V?4Ay = €£p and V-A=0,
0

where p(r,t) is the electric charge density.
To summarize, in the Coulomb gauge Maxwell equations in free and empty
space take the form

(11.8) OJA=0 and E:—%, B=VxA,

so that also

(11.9) OE=0 and OB =0.
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11.3. Plane waves

In the Coulomb gauge consider the case when potential A depends only on
the coordinate x. The wave equation reduces to

2A 24
) 2PA

a2~ ox2

and has a general solution
Alta) = Ay (t=2) + Az (t+2).
c c

The wave moving in a positive direction on the z-axis is

A(-2),

and the Coulomb gauge condition gives

0A,
oxr 0-

Thus A, = at, where a is a constant, which gives rise to a constant electric field
in the z-direction. Since such a field has nothing to do with the electromagnetic
wave, we can set A, = 0. Introducing the direction of the wave — the unit
vector n = e, — we obtain that always A 1 n. Correspondingly,

1 1
E=-A and B=-—-nxA"=-nxE,

c ¢
where the prime indicates t-derivative. Thus the electric and magnetic fields are
perpendicular to the direction of propagation of the wave, and corresponding
electromagnetic plane waves are transverse. Moreover, the electric and magnetic
fields are orthogonal, and their strengths are related by £ = c¢B. The vectors
E B
n. — =
"E’B ]
The components of the energy-momentum tensor of a plane wave are given

by

form an orthonormal positively oriented basis of R3.

E 1 E?
TOO:—2 and S=—SExnxE=—n,
c c c

so that (7%%)% = §2.
A monochromatic wave which is a simply periodic function of ¢t with a vector
potential

A=Re{Age =1,
27c
Here Ay € C? is a constant complex vector, w is the frequency, A = — is the
w

w . . .
wave length and k = —n is the wave vector, where m is a unit vector in the

c
direction of propagation of the wave (in our case n = e, ). We have

A =Re{Ageikren ],



11.4. THE GENERAL SOLUTION 105

where k - r — wt is the phase of the wave. Correspondingly,
E = Re {Eoei(k"'_‘“t)} and B = Re {Boei(k"’_“t)} ,
where
EO = ion and Bo =ik x AO.
Consider the vector Ey € C* and put b = Ege', where E2 = E; - Ey =
|Ep|?e~2. Then b%> = b-b = |Ey|? and
E = Re {peikrwt-o},

Putting b = by + iby, where by, by € R3, we have
b*> = b7 — b3 + 2ib; - by € R,

so that b; and by are orthogonal. Since Ay is orthogonal to the wave vector k,
vectors b; and by are also orthogonal to k.
Choosing the zyz coordinate axes along positively oriented orthogonal basis
k,bi, £by, we get
E,= bicos(wt—k-r—a),
E, = tbhysin(wt — k-1 — ),

where by = |by| and by = |bs|. If by, be are non-zero, we have

E? FE?
I + 2 1’
2R

so that at each point of the space the electric field vector FE rotates in the plane
perpendicular to the direction of propagation and describes an ellipse. Such
wave is called elliptically polarized. If by = b, the wave is called circularly
polarized, and in case by or by is zero, the wave is called linearly polarized.

REMARK. Introduce the 4-vector (k*) = (f’ k:) and (k,) = (E’ fk:) with
c c
the property k,k* = 0. We have k,z" = wt — k - 7, so that

A(z) =Re {Aoe_ik"’mu} .

The electromagnetic waves describe photons, particles with 4-wave vector satis-
fying k2 = k2.

11.4. The general solution
The Cauchy problem for equation (11.8) has the form

OA =0,
A(O7T) = AO(T)a
04 (0,7) = Ay(7),

ot
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where Cauchy data Ag(r) and A;(r) satisfy Coulomb gauge condition
V'AOZO and V-A1:0

and rapidly decay as |r| — oco.
Cauchy problem for the wave equation in R* is solved by the Fourier trans-
form. Namely, let

1 ,

Ao(r) = ol /]Rs e ag(k)d’k,
1 -

) = o [ e

where ag(k) = ao(—k), a1(k) = a1(—k) and k- ap(k) = k- a1(k) = 0. The
solution is given by

1 .

(11.10) A(t,r) = . / e*Ta(t,k)dk,

(27r)§ R3
where (el

a(t, k) = cos(clk|t)ao (k) + sm(|c’|€||)a1(k)_
c
Introducing
1 1
a(k:) §a0(k) + 72ic|k|a1(ki),

we can rewrite (11.10) as

(11.11)  A(t,r) =

/ (e—i(wkt—k-r)a(k) +ei(wkt—k~r)a(k)> d?)k7
R3

(2m)?
where wg = c|k|. For electric and magnetic fields we have
0A
E=—%
= (2;)2 /}R3 W (e*i(“”“t*k"’)a(k) — ei(“’“t*k"’)d(k)) >k
and
B=VxA

- 7(2;)% /R ke (e Hrt RN (k) — etk Ta(k) ) dP.

By Plancherel theorem we have for total energy of the electromagnetic field,
1 1
= <2E2 + 32) d3r
81 Jra \ €
1 2

=0 | (wi a(k)a(k) + (k x a(k)) - (k x a(k))d’k

1 )
_ W/R W2 alk) - a(k)dk,



11.4. THE GENERAL SOLUTION 107

where we have used the identity (k x a(k)) - (k x a(k)) = |k|?a(k) - a(k), which
follows from k - a(k) = 0.

Similarly,
1 3 1 3
— = — E x B
47 R3 Sd'r 4re ]R3< x )d "
1 - 3
= e ) wia(k) x (k x a(k))d’k
1
= — wi (a(k) - a(k))kd*k.
2 R3
Finally, putting
We )

P(k)

(a(k) +a(k)) Q(k)=

= alk)—a(k)),

NG 5 ﬁ( (k) —a(k))

we obtain a representation of the energy and momentum of electromagnetic field
in terms of the oscillators

1 1 1

— —E?>4+ B? d3:7/ P2k 20%(k))dk

o [ (EE ) er— [ P+ iim)
1 c

(E x B)d*r = 3 /R (wy ' P2 (k) + wip Q% (k))kd’E,

4me Jps
where the normal modes P(k) and Q(k) satisfy

k-P(k)=k- Q(k)=0.






LECTURE 12

Hamiltonian formalism. Real scalar field

Here we consider four-dimensional spacetime R* with coordinates z = (2, x!, 22, 2%)

and Minkowski metric (dz?)? — (dz')? — (dz?)? — (dz3)%. We put ¢ = 1 so that
20 =t

12.1. Lagrangian formulation

The scalar field p(z) is a smooth real-valued function on R* of the Schwartz
class for each time slice t = ty. The corresponding Lagrangian function has the
form

L(p(), 0up()) = 5 (Bup(@)d () — mPp()) ~ Vima (),
where D
O = e’ M= 0,1,2,3.

In particular, Viy () = 0 corresponds to the Klein-Gordon model, and Viy () =
g /4! — to the p*-model.
The action functional

S(p) = / L0, 0,0) ",

where integration goes over the part of R* between the slices t = tg and ¢t = t;
with fixed ¢(to, ) = @o(x) and p(t;,x) = @1(x), or over R*, where () is
assumed to be rapidly decaying as |z| — oo. Corresponding Euler-Lagrange
equation 05 = 0 takes the form

0L 0 0%
12.1 oL 9 _
( ) Op Ozt 0(0uyp) 0

and yields equation of motion of the massive real scalar field
(12.2) (O +m?)p + Vi () = 0.

For the ¢*-model this equation takes the form

3

(D+m2)¢+g% =0,

and is a nonlinear Klein-Gordon equation with cubic nonlinearity.

REMARK. Let . be the space of scalar fields on R*. The Lagrangian L is
map from .Z to the functions on R* such that L(¢)(x) depends only on the 1-jet
of p at x € RY, ie., L(p)(z) = Z(p(x), Oup(z)).

109
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12.2. The energy-momentum tensor

Since the Lagrangian function does not depend explicitly on x, we have

0L 0L
0,Y=—0,0p+ ——0,0
99 7T 90p) MY

0L 0L 0L
= (= -0 )00+ 0 (ay >
<8so “8(5u<p)> 7T 9(0,0)

Thus on the solutions of the Euler-Lagrange equation (12.1) we have

0,2 — 0, ((f)(aé'z@@) =0,
or
(12.3) T} =0,
where oy
T+ = W&,gp %

is the energy-momentum tensor. The tensor THY = n”)‘Tf satisfies the conser-
vation law

0, T"" =0,
and is defined up to the addition of 0, UH*¥?, where UH¥? = —PHIV,
For the scalar field the tensor T#” = 9*pd"p — n*¥.Z is symmetric and
1
T = 5 ((909)* + (Vip)* + m*¢ + Vim () ,
TOk — a()gpakgo, Tij — 31@8]4,0
Conservation law for the energy-momentum vector (h,p), where h = T and

p = (T, T92 T9) reads
oh

—+V.p=0.
ot TVP
For the electromagnetic field ¥ = —ﬁF M, and the tensor
0L
—0"A, — &
9(0,A,) 7

is no longer symmetric. Adding to it
! 0, (AVFH) = ! 0, AV F7#
477  4r °

(remember that equations of motion are used!), we get the energy-momentum
tensor discussed in Sect. 11.1 of Lecture 11.
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REMARK. In physics textbooks one proves (12.3) by using the invariance of
the action functional under the translations z — Z = = + a,

[ L(3,0,8)d% — / L, Opp)diz = 0,
\% \%4

where 3(Z) = ¢(x), V = V 4a for arbitrary domain V' C R*, and expressing the
resulting zero as the variation of the action with é¢ = 9,,a* using the Stokes’
theorem and that ¢(z) satisfies Euler-Lagrange equations.

12.3. Hamiltonian formulation

As in classical mechanics, let

0L
o))~ LP)

w(x) =

be canonically conjugated momentum to the field p(z), and define the Hamil-
tonian functional density 4 (m, p) by the Legendre transform

K ((x), () = 7*(2) — L(p(2), 0up())] gy s

1

= 5 (F(@) + (Ve(@))* + m*¢*(2)) + Vi (o(2))-

Equations of motion of the theory are Hamiltonian equations for the infinite-
dimensional Hamiltonian system (., Q, H) with the phase space .Z = . (R3 R)x
< (R3,R), the symplectic form

Q= / (dr(z) A dp(z)) dx,
Riﬁ
and the Hamiltonian functional

H= | #dz.
R3

REMARK. The Schwartz space .7 (R?) is a Fréchet space with the topology
defined by the system of the semi-norms

[l = sup | D’ f(x)]
xzER3

for all multi-indices o, 3 € Z3,. The symplectic form 2 is continuous skew-
symmetric bilinear form on .# defined by

Q(mp1).(ma2)) = | | (m(@)pae) = ma(@)e(a) .

The symplectic form 2 is (weakly) non-degenerate: 2 ((m1,¥1), (72, ¢2)) = 0
for all (mo, o) € A implies (71, 1) = 0.
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Darboux coordinates on .# are 7(z), p(z), € R3, and canonical Hamil-
ton’s equations

(12.4) Oom(t, ) = —521([;) (m(t,x), p(t,z)),
(125) hglt,2) = 5 (r(t.2). (1, )
give equation (12.2). Indeed, by calculus of variations we obtain
oH
a7 (7o), () = ()
and SH
o (@) 9(2) = @) + () + Vi ().

so that (12.4)—(12.5) yield
Go(w) = Dp(x) — m*p(w) — Vi (o).

To make these arguments rigorous, we need to define the algebra o7 of clas-
sical observables on .Z .

DEFINITION. A functional F': .# — R is called real-analytic if F(p) for all
p € A is represented by the absolutely convergent series

Z | '/ / Cmn wh" wm7y17"’7yn)
m:mn R3 R3

m,n=0
xm(x1) - T (@m) oY1) - o(yn) 1 - P d®ys - dPyn,

where cgg = ¢ — a constant, and tempered distributions

C’mn(mlv" -vwm§y17~-~7yn) € y(RS X X Rs),
~———
m+n
are independently symmetric with the respect to the variables x4,...,x,, and

Yi,-- - Yn-

DEFINITION. The real-analytic functional F' is called admissible, if the vari-
ational derivatives

[SSIENGYS]
Z 1 'Tl'/ / Cmn T, T2,... w’m7y17"'>yn)
m—1 n— RS R3

x m(x ) ( m) oY1) - o(Yn) Pk - @y - dPyn

and

szln_l / AgCmn(l'l,...,x,,L;.’B,y%...,yn)x

m=0n=1
X m(@1) o w (@) (ye) o p(Yn) ATy - AP Ed iy - dPy,
belong to the Schwarz class .7 (R?).
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Clearly the product of admissible functionals is an admissible functional.

REMARK. For every real-analytic functional F': .# — R its differential dF
at every point (7, ¢) € 4 is a continuous linear map dF : .# — R, so that

dF € Z(R3xR3)'. A functional F is admissible if dF € .(R3 x R3), i.e. there

oF OF
exist Schwartz class functions, denoted by 5 and , such that
T

(z) S ()

F(u,v) = 0 u(x) + 0 v(z) | dx
for all (u,v) € .

REMARK. Condition that F' is admissible means that for all m,n > 0 and
Ty s @y @1+ o0 € L (R?) the distributions

Crn(Ta ® @ T @ 1 @ -+ ® ) € L (R?)
and

Crn(T1® @ Ty @ P2 @ -+ ® p,) € L (R?)
are represented by the Schwarz class functions.

DEFINITION. The algebra o7 of classical observables on . is the algebra of
all admissible functionals on ./ .

The following result provides a rigorous foundation for the Hamiltonian me-
chanics with the infinite-dimensional phase space .Z .

LEMMA 12.1. The symplectic form Q endows &/ with the Poisson algebra
structure given by the Poisson bracket

6F G oF  6G
(12.6) (£, G ¢) = /R (67r(:c) Sp(a)  dp(x) 5W<w)> o

where variational derivatives are evaluated at (7,p) € M .

PRrOOF. It follows from the definition of real-analytic functionals and the
above remark that {F,G} € & for F,G € &/. As in case of the canonical
Poisson bracket on R?" (see Sect. 5.3 in Lecture 5) the Jacobi identity for the
bracket given by (12.6) is proved by a direct computation. U

The Darboux coordinates 7(x), (), considered as evaluation functionals of
(7, ) at € R3, do not belong to «7. Nevertheless, we have in the distributional
sense,

orm(x) orm(x)

o) Y S M G T Sl Y
and it follows from (12.6) that
(For@) =T and (Fp(e) = L

dp(x)
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Since for I' € &f

OE(m ) g oy
< o (x) Dom(t, ) +

OF(m, p)

ko) = | EECR

R3

S, m)) iz,

Hamilton’s equations for smooth observables
OoF ={H,F}

are equivalent to canonical Hamilton’s equations (12.4)—(12.5).

REMARK. In physics textbooks, Poisson structure (12.6) on 7 is defined by
the following Poisson brackets

(12.7)  Am(z),m(y)} = {o(@),o(y)} =0 and {r(x), p(y)} = d(z —y),
understood in the distributional sense.
12.4. Fourier modes for the Klein-Gordon model
The Klein-Gordon equation
(12.8) (O+mHp(z) =0

in terms of the Fourier transform

1 .
o(k) = @) / emro(x)drz, where k-x=ktz, = k2" — kx,
s R4

takes the form
(k* —m?)p(k) = 0.
Its general solution is a distribution supported on the two-sheeted mass hyper-

boloid k? = (k°)? — k? = m?, which can be written as

p(k) = 0(k* —m?)p(k).
Here
p(k) = O(K%)p1 (k) + 0(—K") pa(k),

where 0(k") is the Heavyside function and pi, po are distributions supported
on R3. By definition of the distribution §(k? — m?) = 6((k")? — wi), where
wi = Vk2 +m?2 > 0, for a test function u(k) € .%(R*) we have

(O(k)p1 (k) (k* —m?),u) = (pi(
(9(—]€0)p2(k)6(kj2 - mz)vu) = (Pl (k)’UQ)a

>
~

<
[
~

where
u(wg, k)

U7 (k?) = 2w’c

3 u2(k) =
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Whence ) .
p(k) = —p1(k)S(K° — —p2(k)S(K°
¢(k) 2ka1( )8( wk)+2wkp2( JO(E” + wi),
where reality condition p(k) = p(—k) gives pa(k) = p1(—k).
Substituting this ¢(k) into the inverse Fourier transform

) = L efzkwA 4
o) = o [ e,

introducing a(k) = v2mp1(k), a(k) = a(k) and changing in the second integral
k by —k we obtain
o

where k° = wy.
ka

b

1 —ik-x = ik-x
(12.9) ¢(z) = T /]R3 (a(k)e + a(k)e™™)

From this general distributional solution we can obtain a solution of the Cauchy
problem for the Klein-Gordon equation, which consists in finding a solution ¢(x)
of (12.8) satisfying

0(0,2) = p(x) and 0Oyp(0,x) = 7(x).

Namely, from

_ 1 ~ ezk:c 31 1 a ezkac a —ikx d?’i
o) = g [ st it [ Gt 1 age=) oF

— 1 & eikw 37, —1 we (a eikm —a efik:w d37k
@) = (271')% /Ra (k) k= (271')% /Ra k( (k) (k) ) 2w

a(k) = wip(k) +i7(k) € S (R?),

so that (12.9) gives classical solution of the Cauchy problem.
It follows from Poisson brackets (12.7) that in the distributional sense

{#w(k),7#(1)} = {¢(k), 6(1)} =0

>

and

{7(k), p( {m(x), p(y) e ket B3 q3y
R3 JR3

_z(k+l)md3w _ (S(k—f— )

} —i(kx— ly)d333d3

e By — §(k —1).

TS
3
"Jo
\

R3
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Thus we obtain
(12.10) {a(k),a(l)} ={a(k),a(l)} =0 and {a(k),a(l)} = 2iwkd(k —1).

Now it follows from Plancherel’s theorem that
1

H=3 /R (7(@) + (V) (x) +m**(z)) d’x

1 . .

=5 [ (RO + wjlo(h)?) d*
o

20.)]@.

- / wna(k)a(k)

Similar computation gives for the total momentum

= — T Zr 3(13
P [ =@ (Vo) @

Thus we see that in terms of Fourier modes Hamilton’s equations (12.4)—
(12.5) decouple

and in accordance with (12.9)
a(t, k) = e " ta(k), a(t k) =e“*a(k).
The real coordinates in the Fourier space

k) +a(k)

CRUCEL] i(a(k) - a(k)

QUJk

Q(k) =

are Darboux coordinates for the symplectic form €2,
Q :/ (dP(k) A dQ(k)) d°k,
R3

and the Hamiltonian of the Klein-Gordon model takes the form

1
H= f/ (P*(k) + wpQ*(k)) d°k.
2 Jps
Thus in terms of Fourier modes the classical Klein-Gordon field is a collection of
infinitely many non-interacting harmonic oscillators, parametrized by k € R3,

with the frequencies wy = v k2 4+ mZ2.



LECTURE 13

Hamiltonian formalism. Gauge theories.

13.1. Classical electrodynamics

Here we continue with ¢ = 1 and use the Lagrangian function

ZL(A) = —iF,“,F‘“’ = %(E2 — B?),

where
04, 04,
M dal Oz
(thus absorbing the factor 1/47 in (8.16) in Lecture 8). One can also rewrite
Lagrangian function in the first order formalism (see Sect. 7.1 in Lecture 7),

1 1
(13.1) L= (@Au —0,A, — 2FW> jazs

where A, and F),,, are considered to be independent. Indeed, corresponding
Euler-Lagrange equations for £ are Maxwell equations in free and empty space

F = 0,A, —0,A, and 0,F" =0.

Plugging formula for F),, back in (13.1), we obtain the Lagrangian function
Z(A). Using A, = (Ao, A1, A2, A3) = (Ap,—A), formula (8.8) and equa-
tions F;; = 0;A; — 0;A;, we can rewrite (13.1), up to a total divergence term
—V(AoE), as

1
(132) L=-E-0A— 5(152 + B?) 4+ AV -E, where B=V x A.
Thus for the electromagnetic field Lagrangian we obtain®
(13.3) L= / (—E(z) - 0A(z) — L(E*(z) + B*(z)) + Ao(x)V - E(z))d’z.
R3

Comparison with formula (7.7) in Lecture 7 shows that Lagrangian of classical
electrodynamics is singular. Namely, it follows from the first term in (13.3) that
the phase space of the theory is the following infinite-dimensional real vector

2
space

M =7 (R3R3) x .Z(R3 R?)

1By the Stokes’ theorem, contribution of the total divergence term is zero.
2Here . (R3,R3) stands for the R3-valued Schwartz functions on R3,

117
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with the symplectic form 2
(13.4) Q :/ (dE;(x) A dA;(z)) d*x,
R3

so that the pairs (E;(x), A;(z)), are Darboux coordinates on .# with the canon-
ical Poisson brackets

(13.5) {Ei(®), A;(y)} = 0i50(x —y), 1,5 =1,2,3.
The second term in (13.3) is the Hamiltonian of the electromagnetic field,

1
(13.6) H= | #(x)d*z= 5/ (E*+B*)d°z, B=VxA.
R3 R3

Comparing the last term in (13.3) with the corresponding term in (7.7) we
conclude that components Ag(x) of the gauge field are the Lagrange multipliers,
and the constraints C(x) are given by the Gauss law,

Cx)=V- -E(x)=0, zcR>

It is instructive to analyze Hamilton’s equations for the Hamiltonian system
(A, H). We have, using (13.5),

(13.7) Ai(m) = {H, A;(z)} = E;(x),

and since A = —(A1, Ag, As), it gives

0A
E=——
ot’
which implies the Faraday law
0B
VxE=——.
8 ot

Since the Gauss law for the magnetic field follows from the definition of B =
V x A, we get the first pair of Maxwell equations. Using B; = (V x A); =
—&j10kA; (note the negative sign!), we obtain

Ei(x) = {H, Ei(x)} :/ Bij(y){(V x A);(y), Ei(z)}d’y

R3

— s [ B0 ). Ei@)dy
]R3
0
= E€jki /]R3 Bj(y)a—yké(:c —y)d’y = eir;0x Bj (),

which gives the Ampére-Maxwell law

oF
— = B.
5 V x
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However, the remaining equation in the second pair of Maxwell equations
— the Gauss law for the electric field V - E = 0 — is missing from Hamilton’s
equations and appears as constraints C(x) = 0. This is a manifestation of the
fact that Maxwell equations are described by a singular Lagrangian, and for
their Hamiltonian formulation one needs to reduce the phase space .# .

It is easy to see that constraints C'(z) are the first class constraints (see Sect.
7.3 in Lecture 7). Indeed, it follows from (13.5) that

{C(x),C(y)} =0 =,yecR’
and also
{H,C(x)} ={H,V-E(z)}=V-(VxB)(z)=0, zcR.

According to Sect. 7.3 in Lecture 7, to determine the reduced phase space
we need to introduce additional constraints D(x) = 0 such that the integral
operator with the kernel {C(x), D(y)} is non-degenerate in L?(R3). Convenient
choice is

D(w) =~V - Az),

which forces the Coulomb gauge! Indeed, it follows from (13.5) that,

82
0zt 0y’

{C(=), D(y)} = 6(x —y),

which is the integral kernel of the operator —A, Laplace operator of the Eu-
clidean metric on R3. Thus the reduced phase space .#, of classical electrody-
namics is a linear subspace in .# defined by

My = {(E(z), A(x)) € # : C(x) = D(x) =0, =xecR}.
Since
{D(z), D(y)} =0,

Darboux coordinates for the symplectic form Qp = Q| ., can be found by the
general procedure described in Sect. 7.3 in Lecture 7.

Using Corollary 7.1 in Lecture 7, the Poisson bracket { , }o on ., associated
with the symplectic form g, can be written as a restriction of the Dirac bracket
on ., associated with the second class constraints (C(z), D(x)). Namely, it
follows from (7.20) in Lecture 7 that

(F.Gyon = {R.G)+ [ [ (1F.C@)G - a){Dw).C)-
(13.8) — {F.D(@)}G(z - y){C(y), G} ) zd’y,
where G(x — y) is a distribution satisfying

G(z - 2){C(2), D(y)}d’z = d(z — y),

R3
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or

G( )_ 1 / eikwdgk
r)= (277)3 R3 k2 '

Using (13.5) we readily compute that

(13.9) {Ei(x), Ej(y)}pe = {Ai(x), 4;(y)}ps =0
and
(13.10) {Ei(z),A;(y)}ps = 47r5i#(:c ~y), =x,y<R

where the distribution 53; (x) is the transverse §-function,

1 kiki\ ..
(1311) (S,LJ.;(QZ) = W/ (6” — k2j> Gkad3k7 1,] = 1,2,3.
™ R3

It satisfies
1 _ .
D0 (x) =0, j=1,2,3.

Thus Dirac bracket (13.8) yields a ‘transverse’ Poisson structure { , } on
A, determined by (13.9)—(13.10). It is degenerate and its center is generated
by C(x) and D(z) for x € R3. The Dirac bracket { , }pp restricts to .#, and
yields a non-degenerate Poisson bracket { , }o associated with the symplectic
form g. Since

[ @ —nswiy - K@)

for any f(z) € (R3,R3) satisfying V - f(z) = 0, it immediately follows from
previous computations that Hamilton’s equations on .

E(z) = {H, E(x)}o,

A(z) = {H, A()}o,

yield
oFE 0A

— =V xB, where B=VxA and — =-FE.
ot ot

Together with the Gauss law, they give the full set of Maxwell equations in the
Coulomb gauge.
In terms of the normal modes P(k) and Q(k) (see Sect. 11.4 in Lecture 11),
satisfying
k- P(k) = k- Q(k) = 0,

the Poisson structure { , }o is given by the transverse Poisson brackets

(R0 Q0 = (5, 14 ) stk -

This finishes Hamiltonian formulation of Maxwell’s equations.
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13.2. Yang-Mills equations

Let G be a semi-simple compact Lie group, g be its Lie algebra with gener-
ators X, satisfying

tr(Xo,Xp) = =200, a,b=1,...,n.

Let A = A, dz" be a connection on a trivial bundle R* x adg over R*, A, =
A} X, and let

1
F = iFwdx" Ndz”, where F,, =0,A, —0,A,+ A A,
be its curvature. Consider the Yang-Mills Lagrangian function (see Lecture 10),

1 1
Z(A) = 3 tr F, F"'" = —ZFEV(F“)“",

where F),, = Fj, X,, and we put g = 1 in formula (10.10). As in case of classical
electrodynamics, it can be written in the first order formalism

(13.12) L= itr (a#AU — 0, A, + (A, A - ;FH) jaZd

Put
Cgoi :FOi and %i :€iijjk, i:,1,2,3.

Using equations F;; = 9;A; — 0;A; + [A;, A;] and the cyclic property of the
trace, we can rewrite (13.12) as follows

1 1 1 y
L= —5 tr (80Ak — OpAp + [Ao,Ak] — 26%) & + g tr FijFU
1 1, 9 9 1
=3 tr | k0o A — i(éak + Bi;) + Ap (0ké% + [Ak, 6%)) | + §3k (tr Apék) .
Thus up to a total divergence,

1 1
L= —5 tr ((o@kaoAk — 5((5?]? + %i) + A()C) where C = 0i8); + [Ak, éakL
or
1
(13.13) L= Epoo Ay — 5 ((Ef)? + (B)?) + AgCe,

where &, = E} Xy, $Br = BiX, and C = C*X,. Thus for the Yang-Mills
Lagrangian we obtain
(13.14)

Ly = / (Bt (@) At (@) — 5 ((BR)* (@) + (Bp)* (@) + Af(2)C" (w)) d'=.
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As formula (13.3) in case of classical electrodynamics, formula (13.14) shows
that Yang-Mills Lagrangian is singular. Namely, it follows from the first term in
(13.14) that the phase space of the theory is the following infinite-dimensional
real vector space

M= 7R3 R™) x 7 (R3,R3")
with the symplectic form )
(13.15) Q= [ (dE(x) AdAY(x))d>x,
R3

so that the pairs (E{ (x), Af (x)), are Darboux coordinates on .# with the canon-
ical Poisson brackets

(13.16) {E¢(x), A’ (y)} = 6p0S(x—y), i,7=1,2,3 and a,b=1,...,n.
The second term in (13.14) is the Hamiltonian of the Yang-Mills field,
1
(13.17) H= [ #(@)de— 5/ (B2 (@) + (B (x)) .
R3 R3

Comparing the last term in (13.3) with the corresponding term in (7.7) we
conclude that components A%(x) of the gauge field are the Lagrange multipliers,
and the constraints C%(x) are given by the nonabelian Gauss law,

C%(x) = Op i (x) + th Ay () B (x) =0, xR,

As in case of classical electrodynamics, these are the first class constraints,
and we verify it by the following computation. Namely, it directly follows from
(13.16) that

{Ei(x),C*(y)} = ~t B (x)d(x — y)

and
{Al(2), C*(y)} = {AL(®), BE] (y) + toaAf () Ef (y)}
= L@ —y) - 8, A5 (@) — )
Oy
0
— _ ab_~ abAc _ .
(09 0+ 122 a0(w) ) oo~ 9

Introducing

cth =3 [ nC@f@ia= [ @i

R3
for a test function f : R® — ad g, where f(z) = f%(x)X, and f(x) € .7 (R?,R),
we can succinctly rewrite these formulas as

def

(13.18) (&), C())} € {E (@), C()} Xa= [E(2), f(2)),
(13.19) {Ax(@),C(f)} E {4 (2), C())} Xa = (Vif)().
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From here we obtain

{0k6k(x), C(9)} = [0k &k (T), g(x)] + [Ek(2), Org ()]
and
{[Ak(x), €k (x)], C(9)} = Ax(x){k(),C(9)} + {Ak(z), C(9)} k()

= &x(x){Ar(x),C(9)} — {&k(x), C(g) } Ak(x)
= [Ax(z), [6k(2), g(@)]] + [(Vig) (), & ()].

Whence
{C(x),C(9)} = [0k6k(x), g(x)] + [Ar (), [Ek(), 9(2)]] + [[Ar(2), 9()], &1 ()]
= [0k 6k (), 9(z)] + [[Ax(z), &k ()], ()]
= [C(x), g(z)]
and
{C(f),C9)} = *% /}R3 tr ([C(z), g(z)]f (x)) d*x
-5 [ rC@li@) @) s

Therefore, we finally obtain

(13.20) {C(f),C9)} = =C([/, 9D

Equivalently, (13.20) can be written as
{C%(=),C(y)} = ~1"C(@)d (2 — y).
REMARK. One can also obtain formulas (13.18)—(13.20) using representation

1

o) = / o (G(@) (Vi) @) P

To compute {H, C*(x)} we observe that it follows from (13.18)
{&(=).C(N} =&, f(z)).

Using (13.19), we also obtain

{Fij(®), C(f)} = {0i4;(z) — 9; Ai(@) + [Ai(z), A;(2)], C(f)}
= 0i(V;[)(x) = 9;(Vif) (@) + Ai(2)(V; [)(2) + (Vif)(2)Aj(z)
= (Vif)(@)Ai(z) — Aj(2)(Vif)(®)
= [0:4;(x) — 0;Ai(), f(2)] + [Ai(), [Ax(2), f(2)] + [[Ai(2), f ()], Ax(2)]
= [Fij(w)a f(m) ’
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so that
{Zi(2), (=)} = [#*(2). f()].
Whence
{62 (x) + 23, C(f)} = &2 (x) + B, f ()]

and for 7 (x) = —i tr (62 (x) + A (x)) we obtain

{A(2),C(f)} = 0.

Therefore

{ch(f)} =0

or equivalently,
{H,C ()} =0,

This finishes the proof that Yang-Mills theory is a Hamiltonian theory with
first class constraints. As in the U(1)-case, for additional constraints one can
use non-abelian Coulomb gauge

D(LE) = akAk(ili) = 0.
Putting D(x) = D%(x)X,, we readily compute

2

Oxkoyk

0 (x —y).

(13.21)  {C%(x), D'(y)} = 6°° oF

3(x —y) + te" Af ()
Thus M (z,y) = {C%(x), D’(y)} is an integral kernel of the differential oper-
ator

(13.22) M = —A + ad Ay ()0,

acting on square summable ad g-valued functions on R3. As in the U(1)-case,
this operator is formally invertible, at least for small Ag(x), which allows to
define the reduced phase space of the theory.

PROBLEM 13.1. The abelian group C*°(R? R) of gauge transformations acts on
the phase space # by f-(E,A) = (E,A + V). Prove that this action is Poisson
and find the corresponding moment map (see Problems 6.4 and 7.3). Show that the
reduced phase space for the regular value 0 is .#, and the corresponding symplectic
structure is given by transverse Poisson brackets (13.10).

PROBLEM 13.2. The nonabelian group C*°(R?, G) of gauge transformations acts
on the phase space .# by g - (&, Ax) = (96:g™", gAg™" — drgg™"). Prove that this
action is Poisson and find the corresponding moment map.
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LECTURE 14

Special relativity

Maxwell’s equations in vacuum are invariant with respect to the Lorentz
group £ = O(1,3) — the isometry group of Minkowski spacetime My — the
vector space R* with Minkowski metric

ds® = N datde” = Adt? — dz® — dy® — dz°.

Points in the spacetime are thought of as coordinates of events and the Minkowski
distance between two events P, = (ct1,x1,y1,21) and Py = (cto, 22, Y2, 22) is
called the interval,

sty = (ta —t1)? — (w2 —21)® — (g2 — 11)” — (22 — 21)*

14.1. The relativity principle and the Lorentz group

The Minkowski structure of physical spacetime is a mathematical formu-
lation of Finstein’s relativity principle: “the speed of light is the same in all
inertial frames of reference”. If K and K’ are two inertial reference frames,
then the relativity principle is the statement that if ds = 0 in K then ds’ = 0
in K’. From here it follows that

ds® = a(v)ds'?,

where the constant a(v) can depend only on the absolute value v = |v| of the
relative velocity v of the inertial frames K and K’. Applying this to three
reference frames K, K1, Ko we get

a(v1)

a(v2)

= a(v12),

where v12 = |vg — v1]|, which implies that a(v) = 1.

The Einstein relativity principle states that the physical laws are invari-
ant with respect to the Lorentz group £, and replaces the Galilean relativity
principle in Newtonian mechanics.

The orbits of the Lorentz group £ in M, have the form

@m:{x€M4:x“xNZCQtZ—xQ—yQ—ZQZmQ}

2 2

for all m* € R and are two-sheeted hyperboloids when m?* > 0, one-sheeted
hyperboloids for m? < 0 and a cone c?t?> = x2 + y? + 2% for m = 0, the light
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FIGURE 1. Light cone

cone (see Fig. 1). Correspondingly, two events Py, P, € My are called timelike
if s2, > 0, spacelike if s3, < 0 and lightlike if s12 = 0. It follows from the
transitivity of the L-action on orbits that for two timelike events there is a
Lorentz transformation such that they take place in the same point in space,
P, — P, = (t2 — t1,0,0,0), while for the two spacelike events there is a Lorentz
transformation such that they take place at the same time, Po—P; = (0, z2—x1).
Clearly the spacelike events cannot be causally related. Correspondingly, the
points inside the light cone with ¢t > 0 represent the absolute future of the event
at the origin O, while the points inside with ¢ < 0 belong to the absolute past.
The points outside the light cone are not causally related to the origin O and are
absolutely remote relative to O. This means that the concepts “simultaneous”,
“earlier” and “later” are relative for these regions.

The Lorenz group £ = O(1, 3) consists of 4 x 4 matrices A = {A#} satisfying

(14.1) ApA =17,
where n = diag{1, —1, —1, —1}. Equivalently,
AZAzVaWu = Nap-
The group £ acts linearly on M4, x + 2’ = Az, where z'# = A*z”. We have
(AD)? = (Ag)? = (AF)” — (AD)* =1,

so that AJ > 1 or A) < —1. We also have det A = +1, so that the Lorentz group
£ has four connected components.

The component of the identity El preserves the future and past light cones
and is called the proper orthochronous Lorentz group or restricted Lorentz group.
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Other components are obtained from it by applying the space inversion P =
diag{1, —1,—1,—1} or the time reversal T = diag{—1,1,1,1}, or PT.

The restricted Lorentz group SI_ is six-dimensional connected Lie group
generated rotations in z#x¥-planes, 0 < p < v < 3. Spacial rotations generated
a subgroup SO(3), while rotations in #°z-planes give Lorentz boosts. Explicitly,
the rotation in z°z!-plane preserves c?t> — 22, where = z'. The corresponding
transformation z* +— z'# can be written as

x = 2’ cosh®) + ct’ sinh ),
ct = 2’ sinh ¢ + ct’ cosh .

Putting
v
cosh ) = , sinhy = c |
v? ) v?
1- 2 z
c? c?
where |v| < ¢, we get
/ /
' + ot v+ 5T
(14.2) x:L, y=y, z=2, t=—E_.
v? v?
1—— 1— —
c2 c2

This transformation relates coordinates (¢, z,y, z) in the inertial reference frame
K with the coordinates (¢',z’,y’, z’") in the inertial reference frame K’ moving
relative to K with velocity v along the z-axis. The formula for (¢, 2/,y’,2') in
terms of (¢, x,y, z) is given by replacing v by —v. wge When |v| < ¢ (or in the
limit ¢ — oo) Lorentz boost (14.2) becomes Galilean transformation (1.8) in
Lecture 1,

=2 +ot', y=v, z2=2, t="*.

dr
Consider a particle in a reference frame K moving with velocity v = e In

the reference frame K’ moving relative to K with velocity V in the z direction
/

velocity of a particle is v’ = diti’ Using
1%
/ !/
dp =XV dy dr=de, df— ——C
V2 LV
12 _

c? c?
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we obtain
_dx v+ V
Y= T AT
1+ —
c
V2
!
ay "\ m
v, = — ="
Yo dt vV
1+ 5
c
VQ
!
dz \1— =
v, =— — = =
oot vV
1+ —
c

When |V] < ¢ we get

/

/ !/
vy =V, +V, vy =vy v, = v,

14.2. The Lorentz contraction and time delay

Consider a rod at rest in the K reference frame and suppose that it is parallel
to the z-axis with the endpoints x; and x. The length of the rod, measured
in the K reference frame, is just Az = o — 1. To determine the length of the
rode in the moving reference frame K’, we need to find its endpoints 2} and
in K’ at the same time ¢’. From (14.2) we obtain

) + ot xh + ot’
r1 = ) T2 =
02 v?
1- = 1- =
c c
and
Az’
Ax = .
02
1--
c

Denoting by lg = Ax the proper length of the rod, the length in a reference
frame where it is at rest, and by I = Az’ its length in a moving reference frame
K’, we obtain the Lorentz contraction

so that [ < .

Next consider the clock which is at rest in the moving reference frame K'.
Let (t),2',y',2') and (t5,2',y’,2’) be two events occurring at the same point
(2',y,2") in space in the reference frame K’, so that the time between these
events in K’ is At' = ¢}, — t}. It follows from (14.2) that in the fixed reference
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frame K
&+7$/ é+7$/
t = by = ‘
1 3 2 3
v v
1——2 1——2
c c

Thus the time that elapses between these two events in the reference frame at
rest K is
At
At = =
v
1=
c
so that At’ < At. This is time dilation in special relativity: the time between
events occurring at the same place in a moving reference frame is always smaller
than the time between these events in a reference frame at rest. The time A#’

is called a proper time.

REMARK. Note that notion of being on the same point in space depends
on the reference frame. Thus events (), 2,9, 2") and (t5, 2,3, 2') occur in the
same point in space in the reference frame K’, but in the reference frame K

'+ vt] x' + vt
="/ 2= T/
v v

-2 1- 2

c ¢

and x1 # Ta.

14.3. Lie algebra of the Lorentz group
The Lie algebra so(1, 3) of the Lorentz group is a Lie algebra of 4 x 4 matrices
X satisfying
X'n+nX =0,

which is obtained from (14.1) by setting A = 5% = I +sX +0(s?). It is a semi-
simple six-dimensional Lie algebra with the generators M, 0 < X\ < pu < 3,
and the Lie brackets

[1\4/\u7 Mpo] _ _nx\pMuU + n/\aM;L/J _ nuaMkp + nupMAo.
Here it is understood that M** = 0 (no summation over repeated indices!) and

MM = —M#H for A > p. The generators M** can be realized as the following
4 x 4 matrices

(M)\,u)g — na)\ég . nau(sg\.

Introducing

1 ,
Ji:§aiklM“ and K; = My, i=1,2,3,
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we obtain the following Lie brackets

[Ji, Jj] = iy,
(K, Kj] = —eij1 1,
i, K] = ek, 4,5 =1,2,3.

I
to the Lorentz boosts. Explicitlyl, J1 = (
1
0
0
0

TEY 0388 I
01 00 ) and Ki={6000 ). K2=1{70
0000 00

the generators
) _ 1 1
satisfying
D) = e, O I = I T =0,

which establishes the Lie algebra isomorphism s0(4) 2 s0(3) @ s0(3). Note that
over R there is a Lie group isomorphism

SO(3) x SO(3) = SO(4)/{I, —I}.

REMARK. Replacing n = diag(1,—-1,—1,—1) by n. = diag(c,—1,—-1,-1),
we get generators J; and K¢, and since 1, ! = diag(1/c, —1 — 1, —1) we obtain

1
(K, Kj] = *cj&‘jﬂl-

Thus in the non-relativistic limit ¢ — oo for the generators J; and fQ =
lim., o K we obtain the relations

(i, Jj] = iz i,
[Ji, Kj] = eiuK,
[IN(“RJ] =0,

which characterize the Lie algebra se(3) of the Euclidean group E(3) — the
homogenous Galilean group Gy — discussed in Sect. (1.3) in Lecture 1! Thus
we see that Euclidean Lie algebra se(3) is a contraction of the Lorentz Lie
algebra so(1, 3).

1Compare with formulas for X;, X2 and X3 in Example 2.2 in Lecture 2.
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14.4. Lorentz group as deformation of the Galilean group

Specifically, the Lorentz Lie algebra so(1,3) can be considered as a defor-
mation of the Galilean Le algebra se(3), with the deformation parameter being
the inverse square of the speed of light c.

Namely recall that a formal deformation of a Lie algebra g with a Lie bracket
[, ]is a Lie algebra g over R[[t]], a ring of formal power series in variable” ,
with the Lie bracket

[z, yle = [, y] + tma (2, y) + CPma(z,y) + -
The Jacobi identity for the bracket [, |; implies that the linear map m; : A%2g —
g satisfies
[ml(x7 y)? Z] + ml(['z» :L‘], y) + [ml(y7 Z)7 ‘T]
(14'3) +[m1(zﬁ x)7 y] + ml(['zv .’L‘], y) + ml([ya Z], x) =0

for all z,y,z € g. This is the equation of 2-cocycle in the Shevalley-Eilenberg
complex Hom(A®g, g), where g is considered as a left g-module with respect
to the adjoint action. Specifically, for any g-module M the coboundary map
8% : Hom(AFg, M) — Hom(A**1g, M) is defined by

k41
Okf) (@1, egr) = 3 (1) flan, .. 8y Teg)+
i=1
+ Z (*1)i+jf([$i,$j],(£1,...,i’i,...,fj,...xk+1).

1<i<j<k+1

REMARK. In case when g = Vect(X), where X is a smooth manifold, and
M = C*(X), the Chevalley-Eilenberg complex Hom(A®g, M) becomes the de
Rham complex Q35 (X,R).

Equation (14.3) for m; can be written as dam; = 0. Coboundaries

(61f) (@, y) = [z, f()] = [y, f(@)] = f([z,y])

give infinitesimally trivial deformations: the linear map Fi(x) = = + tf(x)
establishes the infinitesimal isomorphism

Fy([z,y]e) = [Fi(z), Fy(y)] + O().

Thus nontrivial infinitesimal deformations are in one-to-one correspondence
with the second cohomology group H?(g, g).
DEFINITION. The Lie algebra is called stable if H?(g,g) = 0.

The semi-simple Lie algebras are stable. However, for the Lie algebra g =
s¢(3) we have H?(g,g) = R and for the 2-cocycle m; with the only non-zero

values m (K, Kj) = —¢&;4;1J we obtain that the bracket
[Z‘, y]t = [l‘, y] + tml (.’II, y)

2Should not be confused with the time variable!
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is a Lie bracket (contribution of the terms proportional to #?* to the Jacobi
identity is zero). Putting t = ¢=2 we obtain the Lorentz Lie algebra!

The Lorentz algebra is semi-simple and therefore is stable. Whence the
passage from the Newtonian spacetime to the Minkowski spacetime is a defor-
mation from the unstable structure to the stable one and the special relativity
is natural deformation of the Newtonian mechanics.



LECTURE 15

Relativistic particle

A motion of a particle in M} is described by a world line. By definition, it is
amap 7 : [t1,t2] — M*, ~y(t) = x#(t), such that at each t € [t1,ts] the tangent
vector 7/(t) is timelike. Explicitly, v(¢t) = (ct,7(t)) where v(t) = 7(t) satisfies
|[v(t)] < ¢, where v = |v]|. In terms of the natural parameter s on the world line,

2
ds:cyll—%dt,
c

the unit tangent vector is given by

ut = — = s uputt =1,
and the acceleration is

REMARK. The natural parameter is ¢ times the proper time along the world

line,
NG
s(t):c/t1 1- = dr.

15.1. The principle of the least action

Let a,b € M, be two events with a timelike interval sib > 0. It is natural to
define the action of the a relativistic particle along the world line v : [tg, 1] —
My, v(to) = a and v(¢1) = b, by the following expression

S(7) = —a /ab ds.

Here integration goes over the world line v and « is a constant.
It follows from the pseudo-Euclidean structure of the Minkowski spacetime

that the integral f: ds takes a maximal value when it is taken along a straight
world line connecting a and b. Indeed, applying a Lorentz transformation, we

137



138 15. RELATIVISTIC PARTICLE

can assume that a = (cty, 2/, y’, 2") and b = (et}, 2,9/, 2), so that along a world
line v

b
/ ds < c(t] —t;)

and the equality occurs for v being a straight line connecting a and b with zero
velocity.
Thus to have a minimum of the action we have o > 0, so that or y(t) =

(ct, (1)),

t1 2
5(7):/ L(¥(t))dt, where L:—a\/l—z—? and v = |f|.
t

0

The quantity a characterizes the particle. In classical mechanics a particle
is characterized by its mass m (see Lecture 1). Whence in the non-relativistic
limit ¢ — oo we should recover the Lagrangian of a free particle mv?/2, and
this comparison yields a relation between o and m. Namely, we have as ¢ — oo

[ 02 av? 5
L=—-ac 1—0—2:—0404—%4—0(0 ).

Omitting the constant term —ac, which does not affect the equations of motion,
we obtain @ = me. Thus the action of a free relativistic particle of mass m is

b t
(15.1) S(y) = fmc/ ds :/t L(+/(t))dt

with the Lagrangian function

(15.2) L=-mc*\/1-=

ProrosiTION 15.1. The Euler-Lagrange equations of a free relativistic par-

ticle are
dut

ds
and describe a motion with constant velocity.

Proor. Since ds = \/dz,dz#, we have along the world-line +,

N
5(ds) = ((Z‘Lédx“ + 6dazﬂd;>

2
=utdéx,
o
= d(utdz,) — ddis&“”ds,

and using éz,(a) = dz,(b) = 0, we obtain

b b dut
08 = —mc/ d(ds) = mc/ K(Sxﬂds. O
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15.2. Energy-momentum vector

Canonically conjugated momentum p to the position r of the particle is
given by

0L mwv
P= %0~ v
I-=
The corresponding energy is
2 2 2
muv v me
E=p-v—L=———=+mc*/1 - =
v? ¢ v?
- 1-

At v = 0 we obtain the rest energy &, of the particle,
&y = mc?.

At small velocities we obtain

2

&=+ +0")

which, except for the rest energy, is the classical expression for the kinetic energy
of a free particle. We have

2
— =p +m’?, p’=p-p,
C

so that the corresponding Hamiltonian function is

H = c\/p? + m3c2,

and Hamilton’s equations

N Y
P=""5 ~ Op

give Euler-Lagrange equations of a free relativistic particle (see Proposition
15.1). Introducing the energy-momentum four vector p* = (&/¢,p), so that
pp = (& /¢, —p), we have

pup” = m?c?.
Note that p = —(p1,p2,p3) and

_aL
Pr =g
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15.3. Charged particle in the electromagnetic field

Here we consider the interaction of a free relativistic particle of mass m and
charge e with the external electromagnetic field with a potential A = A, dx*,
where A, = (cp, —A). To every world line v : [to,¢1] — M4 one associates a
holonomy of the connection d + A along -, the integral

b
/ A, dxt

of A along . It is natural to define the action of a free particle in the electro-
magnetic field as a linear combination of the action of a free particle and the
holonomy, and we put

b e b
S(v) = —mc/ ds—— | Apdz!
a c a

t1 U2 e
15.3 = —m*/l— =+ -A-v—ep|dt
(15.3) 5 @
t c c

ProproOSITION 15.2. The Fuler-Lagrange equations for the action functional
(15.3) have the form

dp
d
where F is the Lorentz force,

F:e(E—'—BXB).
C

PrROOF. We have

b
= / d 5x”ds
a

Now using Proposition 15.1 we obtain

b "
55’:/ (mcdu”+6F dx )5xvds
o ds c

and the Euler-Lagrange equations take the following invariant form

du, + € @
ds ¢ " ds
Using formula (8.8) in Lecture 8, relation mcu, = p, and equation (15.4) for
v =1,2,3, we readily obtain

b

0A, dx* o dézt
b

0A,, dx* o 6A,L dz¥
(896’/ ds Oxv ds 6;z:>ds

(15.4) me =0.

d
(15.5) di;’ —c¢E+ Zv x B. 0
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REMARK. Since mcug = /m?c2 + p2, equation (15.4) for v = 0 follows
from (15.5).

REMARK. In the non-relativistic limit |v| < ¢ equation (15.5) turns into
dv v
m— =e|E+ — X B)
dt ( c
— Newton’s equation with the Lorentz force.

The Lagrangian of a charged particle in electromagnetic field is

2
L:—mc2\/1—2—2+§A~v—eg@.

The canonically conjugated to » momentum of the charged particle, the gener-
alized momentum, is defined by

L
p_Ob_ My ca_ A,
& C

ov 02
Vi-=
c
and the corresponding energy is

oL 2
é":v——L:L—i—eap,

ov 2
s

c

=cv/m2c2 + p? + ep.

The Hamiltonian function is obtained from the energy & by replacing p =
P-SAandis given by
c

%C\/mQCQJr (Pf SA)2 + ep.

Hamilton’s equations of motion

p_ o . oA
- or’ 0P’
together with the definitions
E:ngo—%, B=VxA,

give Euler-Lagrange equations for a charged particle in the electromagnetic field.






LECTURE 16

Hamiltonian formulation

16.1. Poincaré group and Noether integrals

The Poincaré group is a ten-dimensional Lie group, the group of isometries
(16.1) t o't = Ala¥ + at
of Minkowski spacetime M. The group multiplication in B is given by
(A1,a1)(A1,a2) = (M1Ag, a1 + Ajaz), M €L, a1 € R,

There is an embedding P — GL(5,R) given by

A a
(Aya) — (0 1) .

The Lie algebra p of the Poincaré group P8 is a ten-dimensional Lie algebra,
a semi-direct sum of the abelian Lie algebra R* and the Lorentz Lie algebra
50(1,3). Denoting by P* the generators of p corresponding to space-time trans-

lations we obtain the following set of relations:

[P*, P"] =0,
(MM, P7] = 7 PPt — a7 P2,
[MA“, Mpo] _ _nApM;uf + nAaMup _ nqu/\p 4 ’I’]“pMAU.

The Lagrangian function of a free relativistic particle

dx* 20

L = —mcy/2HT,, iu:idt’ t=",

is invariant under the action (16.1) of the Poincaré group on My,

dz'* z'0
Ldt = L'dt, where L' = —mc,/i'mi!, i'"="—, ' =".
K dt c

According to Noether theorem in Sect. 2.2 in Lecture 2, there are ten integrals

of motion corresponding to the generators P* and M**. The integrals of motion
for the abelian Lie algebra R* are

oL

Pu="55m

)
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that is,
H
pPo = 70 = p2—|—m2027 p =

(recall that p, = (po, —p), see Sect. 15.2 in Lecture 15). The vector fields on R*
which corresponds to the one-parameter subgroups e¥™"" of the Lorentz group
generated by M* are

0

X0 = (MM 2) 5
‘TO'

— OV b _ O,V .
(7t —n™a") o=

The corresponding Noether integrals are given by

OL
S =k =) 5 = atp” — apt.

Thus we obtain components of the total angular momentum

Jy = JB = 22p% — 2, J, = J3 = Bt alp3 g = J12 = gplp? — pla?
and integrals of motion corresponding to Lorentz boosts
K, = J% = 2%! — 2190, K, = JO2 = 002 _ 20 |, = JO — 20,3 _ g3,

Of course it is easy to verify directly that these functions are integrals of
motion. Thus we have
J% =cp' —i'p" =0

due to the relation
cp

/pz + m2c2 ’

muv
p=———
V1 v
CQ

16.2. Hamiltonian action of the Poincaré group

- muv
p_ivz'
==

maps B(0, ¢), the ball of radius ¢ in R?, onto R? and the phase space of a free
relativistic particle of mass m is RS. The inverse transform is

v =

which follows from

The Legendre transform

(16.2)

cp _cp

/p? + m2c2 op0

(16.3) v =
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The symplectic form is given by
w=dpAdr =dp' Ndz' + dp* Ada® + dp® A da®

with Darboux coordinates' (p,r) = (p!,p?,p%, 2, 22, 23).

It is remarkable that there is a Hamiltonian action of the Poincaré group 3
on RE!

Indeed, let .Z be the set of all timelike straight line in R*. Every [ € . has
the form [ = {z + sv, s € R}, where z,v € R* and v is timelike, v*v,, > 0. The
Poincaré group P acts on .Z by

(A, a)(1) = {Az + a + sAv}.

Each timelike | admits a unique representation ! = {z + sv, s € R} where
x = (0,7) and v = (c,v) with v = |v| < ¢. Thus ¥ = R3 x B(0, ¢), which is
isomorphic to R® by the Legendre transform v — p, and we obtain the Poincaré
group action on RS,

This action preserves the symplectic form and is Hamiltonian. Specifically,
the action of the Euclidean group E(3) < B on R = R3 x B(0, ¢) is Hamiltonian
with the Hamiltonian functions

Jy =225 — 2203, Jo = aPpl — 2pP Jy = 2'p? — a2p!

(see Example 6.1 in Lecture 6) and P; = —p’. Indeed, abelian group of transla-
tions of R? acts on RS by (p,r) — (p,r + a) and the corresponding vector field
Xq is given by

of
oz’

XaNr) = L o —a) = a0 2L ).

du u=0
Thus the vector fields X, are Hamiltonian vector fields with Hamiltonian func-
tions —p*, i.e.,
0
ox?
The one-parameter subgroup 7' of time translations acts on .Z by | — [ +
(2°,0,0,0) with the representative (r — 2°v/c,v). Thus T acts on R® by

Xe, = = —J(dp"), i=1,2,3.

0
rHr—%, p—p
p
L)
oxt’

and the corresponding vector field is X = Using that

%O"ﬁ

J(dp) = 6% and J(dr)= —%,

INote that in accordance with Sect. 15.2 in Lecture 18 we have p = (p',p%,p?).
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(see Sect. 4.3 in Lecture 4) we obtain that X = J(dp®), i.e., X is a Hamiltonian
vector with with the Hamiltonian function is p® = \/p? +m?2c?, i.e., is 1/c times
the Hamiltonian of a free relativistic particle of mass m.

Next, consider the one-parameter subgroup .#; of & which consists on
Lorentz boosts in 2%z!-planes,

A()z = (2 cosh¢p + x' sinh ), 20 sinh ¢ + 2! cosh ¥, 22, 23), ) € R.

To find the action of A(¢)) on RS we need to determine how in acts on the
representative (r,v) of a straight line {. We have

A)(0,7) = (2! sinh ¢, 2! cosh ), 22, 23),
A(¥)(c,v) = (ccoshep 4 v sinh 1, esinh1p 4 v' cosh 1, v, v?),

so that

AW (v) = cv! cosh i) 4 ¢?sinh ¢ cv? cv?
~ \_ vlsinhv 4 ccoshvp " vlsinhv 4+ ccoshvp’ vlsinh) + ccoshp

and from this we obtain

L cosh v + csinh
A {4 coshtr — o sinh bSO
(W)(r) <$ coshyp — 2 sin wvl sinh ¢ + ccosh )’
L2 xlv? sinh ¢ 23 xlv3 sinh ¢
vlsinh) + ccosh )’ vlsinh) + ¢ cosh
_ cxt 22 x'v? sinh 23 23 sinh
vlsinh + ccosh)’ vlsinh + ccosh)’ vlsinh + ccoshy )
Using (16.3), we get
AW)(r) =
z'po 2 x'p? sinh v e x'p3 sinh v
pl sinh ) + pg cosh v’ plsinh ) + po cosh v’ plsinh + pgcosh)

To obtain the action of the Lorentz boost on the momentum vector p we need
to use equation (16.2). Namely, A(¢)(p) = p is relativistic momentum for the
velocity vector © = A()(v). Denoting 0 = |o| we get

0? ? v?
1- 2 = 1- 2.
2 (v'sinh® 4 ccosh))? ( c? )

Using
0 me
p = P
v
1 R,
o2
we obtain -
v
ﬁ — = = (pl COShw+pO SinhwapQ’pg)?
D)
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so that
A(¥)(p) = (p" coshep + p° sinh v, p®, p*).

The vector field corresponding to the % action on R® is given by

Xi(f)(p,7) (A(=¥)p, A(=¢)7)

- dw’w_of

B xl e 0 n 21 n 1o} 0 O
= o P et et g Pt
Thus we obtained that X is a Hamiltonian vector field with the Hamiltonian
function Ki(p,r) = 2*/p? + m2c?, i.e.,
X = J(dK,).

Similarly, we see that vector fields X and X3 for one-parameter subgroups J#
and J3 are Hamiltonian vector field with the Hamiltonian function Ky (p,r) =
22/ TP and Ky(p,r) = 23\/p7 + m2e.

Since Hamiltonian vector fields preserves symplectic form, the Poincaré
group P acts on R® by canonical transformations (symplectomorphisms). The
following theorem summarizes obtained results.

THEOREM 16.1. The defined above action of the Poincaré group B on the
phase space RS of free relativistic particle with mass m is Hamiltonian. The
Hamiltonian functions corresponding to space-time translations, space rotations
and Lorentz boosts are

=V p2 + m2€27 -RL = _pi7 J’L = Eijkxjpk7 KZ = xi V p2 + m202a

1=1,2,3. They satisfy the following Poisson brackets

(16.4) {P,,P;} ={P;, P} ={Ji, Po} =0, {Ji,J;} = —¢eijik,
(16.5) {Ki, K} = eijpdi, {Ji, Kj} = —eiju Ky,
(16.6) {Ki, Po} = P;, {Ki, P} =—6;;F, {Ji,Pj} = —¢cijubPr.
PrOOF. Straightforward computation using the Poisson bracket
0f 9g 9f 9g
= 2J99 9J99 O
{f.9}(,7) opar  ordp

REMARK. As in Example 6.1 in Lecture 6, Poisson brackets between Hamil-
tonian functions have the same form as Lie brackets of the corresponding gen-
erators of Poincaré Lie algebra, taken with the negative sign.

Using that ¢p® = 27, the Hamiltonian of a free particle, we obtain from

(16.4)~(16.6),

(16.7) I

(16.8) AK, 27} = 2" {27},

(16.9) {P,27} = 65, 4,j=1,2,3.
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These Poisson brackets exemplify that RS is a phase space of a relativistic par-
ticle.

16.3. No-interaction theorem

The relativity principle imposes very strong restriction on Hamiltonian sys-
tems: it implies that the interaction of finitely many relativistic particles is not
possible! The precise statement is the following.

THEOREM 16.2. Consider the Hamiltonian system of of n particles with the
phase space R™, the symplectic form

w= zn:dpa Adrg,

a=1

where o, and p, are coordinates and momenta of the a-th particle, and with the
Hamiltonian function 7. Suppose that (RS, w, ) is a system of n relativistic
particles, that is, the principle of relativity holds in the following form:

a) There exists a set of ten generators of the Poincaré Lie algebra — ten
functions Py = #/c, P;, J; and K; on R™ with Poisson brackets
(16.4)~(16.6).

b) The coordinates of the particles transform correctly under the Poincaré
group — coordinates o, a = 1,... n, and the generators of the Poincaré
Lie algebra have Poisson brackets (16.7)—(16.9).

In addition, suppose that the system is non-degenerate,

2
det 3‘%. #0
opt,0p;,

Then the acceleration of each particle vanishes,

{%7{%77"0,}}:07 azl,...,n.

Equivalently, there are Darboux coordinates p, and r, (the coordinates of the
particles are unchanged) and the constants mg > 0 such that

n
P = Zﬁ(ﬂ
a=1
n
# =3 BT R,
a=1
n
Ji = Zaijkwiﬁ’;,
a=1

n
Ki = fol\/ﬁg + 7’7’1%02.
a=1



16.3. NO-INTERACTION THEOREM 149

The theorem is a manifestation of the fundamental fact that relativistic in-
variant Hamiltonian systems of interacting particles in Minkowski spacetime
should have infinitely many of degrees of freedom, and the interaction is de-
scribed by by a field theory. The examples we have seen so far are the theory
of electromagnetism and a charged relativistic particle interacting with the ex-
ternal electromagnetic field. Another fundamental example in classical physics
is the theory of gravity and a massive relativistic particle interacting with the
external gravitational field.

PROBLEM 16.1. Prove the no-interaction theorem for n = 1.






LECTURE 17

General relativity

Newton’s law of universal gravitation states that a particle with mass m; at
point 7 attracts a particle with mass mqy at point ro with the force

Ty — T
FQ = me1m22713
|72 — 71
and F; = —Fy. Obviously the Newton’s law is not a Lorentz invariant and one

needs to find a Lorentz invariant description of gravity.

The first attempt' was to include the theory of gravity into the special
relativity by assuming that gravitation field is determined by the four potential
Af. The interaction of a relativistic particle of charge e and mass m would be
described by the action

S:—mc/ds—E/Audx“—m/Agdx“.
c

Considering the case e = 0 and using Af = (¢,0,0,0), one gets a Lorentz
invariant modification of Newton’s law of universal gravitation,
dp Op muv
- = —-m—— = —.
dt or’ P 2
1— —
2

However, this approach does not give a correct answer for the precession of the
perihelion of Mercury.

17.1. Spacetime in general relativity

A smooth connected four-manifold M is called a Lorentzian manifold if it
carries a pseudo-Riemannian metric

ds® = g (v)dztdx”

with the signature (+,—,—,—) at every x € M. The Minkowski space is a
non-compact Lorentzian manifold, and it is easy to see that every non-compact
manifold admits a Lorentzian metric. However, a compact manifold M admits
a Lorentzian metric if and only if its Euler characteristic vanishes. In other

1A. Poincaré in 1905.

151
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words, a manifold M admits Lorentzian metric if and only if is has nowhere
vanishing vector filed?.

As for the case of Minkowski metric, a tangent vector v € T, M is timelike,
null, or spacelike if, respectively, its length is positive, zero, or negative. A curve
v : [ug, ug] — M is timelike if 4/ (u) is timelike for all u € [ug, uz2] and is causal
if if 4'(u) is timelike or null for all w € [u,uz2]. A Lorentzian manifold M is
time-orientable if admits a timelike vector field X € Vec(M) which defines a
time orientation of M. The opposite time orientation is given by the vector
field —X. Specifically, a timelike or null vector u € T, M is future-directed (or
past-directed), if u- X; > 0 (or u- X, < 0). A timelike curve v : [ug, ug] — M is
future-directed (or past-directed), if 4/(u) is future-directed (or past-directed)
for all u € [uq, ug).

DEFINITION. A spacetime is time-oriented Lorentzian four-manifold M.

DEFINITION. The chronological future Ii/[ () of x € M is the set of points
that can be reached from z by future-directed timelike curves. The causal future
JM(z) of z € M is the set of points that can be reached from x by future-directed
causal curves and of x itself. Similarly, the chronological past I (z) and causal
past JM(x) of x € M are defined by using past-directed timelike and causal
curves.

ProprosITION 17.1. If the spacetime M is compact, there exists a closed
timelike curve in M.

PROOF. The familiy {I}/(z)},en is an open covering of M. By compact-
ness, M = I¥(z) U UIM(zy). If 21 € IM(22) U - UIM(z,,), then
z1 € IM(zy) for some 2 < k < m. Then I} (z1) C IM(x)) and we can omit
IM(z1) from the covering. Thus x1 € I} (z1), so that there is a timelike future-
directed curve starting and ending in x;. 0

Since this allows for the time travel, we will consider only non-compact
spacetimes. Recall that a piecewise C'-curve in M is called inextendible, if
no piecewise C'-reparametrization of the curve can be continuously extended
beyond any of the end points of the parameter interval. A set S is called achronal
if there is no timelike curve which intersects S twice.

DEFINITION. An achronal hypersurface % in M is a Cauchy hypersurface if
every inextendible causal curve intersects Y exactly once.

PROPOSITION 17.2. If a spacetime M admits two Cauchy hypersurfaces 31
and Yo, then X1 is diffeomorphic to Xo.

DEFINITION. A spacetime M satisfies the causality condition if it does not
contain any closed causal curve. A spacetime M satisfies the strong causality
condition if there are no almost closed causal curves. That is, for each z € M

QIndeed, according to a theorem by Steenrod, a compact manifold admits everywhere
defined, continuous quadratic form of signature k if and only if it admits a continuous field of
tangent k planes.
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and for each open neighborhood U of = there exists an open neighborhood
V C U of = such that no causal curve in M intersects V more then once.

Clearly the strong causality condition implies the causality condition.

DEFINITION. A space-time M is globally hyperbolic if it satisfies the strong
causality condition and for all z,y € M the intersection J}(z) N JM(y) is
compact.

The following fundamental result holds®. It describes the structure of glob-
ally hyperbolic spacetimes explicitly: they are foliated by smooth spacelike
Cauchy hypersurfaces.

THEOREM 17.1. Let M be a spacetime M. The following are equivalent.
(1) M is globally hyperbolic.
(2) There exists a Cauchy hypersurface in M.

(3) M is isometric to R x X with the Lorentzian metric Bdt? — -, where 3
18 a smooth positive function on M, 7 is is a Riemannian metric on
Y depending smoothly on t € R and each {t} x ¥ is a smooth spacelike
Cauchy hypersurface in M.

COROLLARY 17.2. On every globally hyperbolic spacetime M there exists a
smooth function h : M — R whose gradient Vh € Vect(M) is timelike and
future-directed and all level sets of h are spacelike Cauchy hypersurfaces.

Such function h is called a Cauchy time function and its gradient Vh is

defined by
o O 0

Ox+ Ozv’
where ¢"¥ is the inverse matrix. In fact®, for every Cauchy hypersurface ¥ in
M there is a Cauchy time function h such that ¥ = h=1(0).

From physics point of view, a proper time 7 along a timelike curve 7y is

defined by
1 u
7(u) = f/ ds,
¢ Ju,

where the integration goes over . It is natural to consider only those coordi-
nates z* for which z° plays a role of a time variable, and z!, 22, 23 are space
coordinates. Specifically, two events occurring at a same point (z!, 2% 2?) in
space should be connected by a timelike curve v(u) = (2°(u), 2!, 22, 23). This

implies that gog > 0 and the proper time between these two events is

1
T:E/@dxo.

Vh=g

3Bernal, A.N., Sanchez, M.: Smoothness of time functions and the metric splitting of
globally hyperbolic spacetimes, Commun. Math. Phys. 257 (2005), 43.

4Bemal7 A.N., Sanchez, M.: Further results on the smoothability of Cauchy hypersurfaces
and Cauchy time functions, Lett. Math. Phys. 77 (2006), 183.
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To determine the metric dI? = %jdxidxj in space induced by ds? we can-
not simply put dz® = 0 since proper time at different points in space depend
differently on the coordinate x°. However,

2
ds* = goo(dz®)? + 2go;dx’dx’ + gijdxidmj = goo (dmo + gmdaci) — %jdxidxj,
goo
where
(17.1) iy = —gij + 2909 52123
goo

is a three-dimensional metric tensor. Since ggg > 0 it is a Riemannian metric
tensor. It depends on z° so that the distance in real space depends on time.
The relation
da® + L% gzt = 0
goo
can be integrated over any curve in space to define z° along the curve. This
allows to synchronize the clocks in general relativity along any curve in space.
However, this synchronization depends on a curve connecting two points in
space. Proposition 17.1 asserts that for a globally hyperbolic spacetime one can
choose coordinates such that gg; vanish and one can synchronize clocks over all
space. The corresponding coordinates (reference system in physics terminology)
are called syncrhonous.
It is easy to see from (17.1) that

—ij 7% = .

The relations ggp > 0 and +;; is positive-definite 3 x 3 matrix are equivalent to
the

g goo go1 go2
goo > 0, det( 00 901) <0, det {gi0 911 g12| >0
gio 9gi1
920 g21 g22

and

goo goi Go2 9o3
dgio 911 d12 913
g20 921 922 9g23
g3 931 g32 933

g = det < 0.

Physically these conditions should hold for any choice of coordinates on M which
can be realized with the aid of “physical bodies”.

17.2. Particle in a gravitation field

A gravitational field is a change of a metric of a space-time and is described
by the metric tensor g, (z). The action of a relativistic particle of mass m in a
gravitational field has the same form as in Lecture 15,

_dat

S(v) = —mc/ds = —mc/ Vgutuvds,  ut = =
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In other words, the action functional is —mc times the length functional in the
pseudo-Riemannian geometry. Correspondingly, the Euler-Lagrange equations
are the geodesic equations with respect to the natural parameter,

d2a? \ dx* dx¥

ds? mWods ds

where

A 1 Ao 89;u7 6gua _ 8guy
(17.2) L, = 59 D + Do Do

are Christoffel’s symbols. The free particle in a gravitational field moves along
the geodesics.

17.3. The Riemann tensor

Recall that the metric g,, () on the spacetime M determines a Levi-Civita
connection” in the tangent bundle T'M. Explicitly it is given by

V=d+A, where A=A,dz".

0
Here A, (x) are linear operators in T, M which in the basis Fpn A€ given by
x

the matrices

(17.3) (A,)) =T},

0
Thus a derivative of a (1,0)-tensor, a vector field V' = v#—— in the direction

ozt
9 i en b
—— is givi
Gy g Y )
ov
A A U

(VHV) - 81‘“ +Fl/uv )
while a derivative of a (0, 1)-tensor, a 1-form 0 = a,dz*, is
80,)\ v

(Vub)r = T ApGu-

Directional derivative V, of an arbitrary (p, q)-tensor is defined similarly. We
have

(174> ng,w =0 and V/\guy =0.

The curvature of the connection V is F' = dA+ AN A, a 2-form with values
in EndTM (see Sect. 9.1 in Lecture 9). We have

F =Y Fuda" Ada",

pu<v

5A metric connection with no torsion.
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where oA 94
v fad
Ozt Oxv + A Av]

On 2-forms B with values in End T'M the connection V acts by

F, =

VB=dB+AANB—-BAMA,
which gives the Bianci identity
VF =0
for a curvature 2-form. Equivalently,
ViF,, +V,F,\+V,Fy, =0.

Using (17.3), we obtain the following formula for the Riemann curvature

tensor R)‘pm, = (FW):‘,
ory, o
A o pv PH A 1o A 1o
(175) R puv — 6%‘:“‘ - 83;‘” + ]-—‘g-u]-—‘py - FUUFPIJ«'

The Bianci identity for the Riemann tensor has the form

(17.6) V.R , +V,R

puv pop

+V,.RY,, =0.

The Ricci curvature
A
Rl“’ =R pAV
is the trace of the Riemann tensor and is given explicitly by
A A
or,, B 2N
ox oxv

(17.7) R, = + F;U - rgkrgy.

It follows from (17.2) that
1 OGus | Og9ro  Ogux
F/\ _ Ao 123 _ 123
HA T 9 (833)‘ T n T ae
1 Ao 890)\
2 oz
1oy _olwyTg
29 0z Jxr

Thus the Ricci tensor is symmetric, R,, = R,,, and determines a symmetric
bilinear form R, dx*dz" on the tangent space.
Finally, the scalar curvature R is the trace of Ricci curvature tensor,

R=g" Ry,
Contracting A and v in (17.6), we get

2V, R,; —V;R,, =0
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and using (17.4) we obtain

2V, RS — VR, =0.
Finally contracting u and p we get

2V,RE - V,R =0,

or

1
(17.8) v, (R{f - 2553) =0.






LECTURE 18

Einstein equations — I

18.1. Einstein field equations

In general relativity the Lorentzian metric g, of the space-time M satisfies

FEinstein equations

1 8rG
R/w - ig/u/R = CTT/LW

where R, is the Ricci curvature, R is the scalar curvature and T), is the
stress-energy tensor of matter. It is defined as

551’1’13, er
Ty = ZPmatter
Sgrv

It follows from Bianci identity (17.8) that Einstein equations imply that neces-
sarily
v, =0, v=0,123.

These are conservation laws in general relativity.
Rewriting Einstein equations in the form

1 &G
b MR — TH
R 5 "R a L

and taking traces we obtain

A
where T' = T}/. Thus Einstein equations can be also written as

81G 1

In particular, the empty space Einstein equations reduces to
R, =0.

18.2. Particle in a weak gravitational field

Here we solve the geodesic equation and Einstein equations in case of a weak
gravitational field. Namely, suppose that M = R* and

1 1
(182) o) = + 020+ 0 (5 ).

159
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where 7, is Minkowski metric. It is also assumed that these asymptotics can
be differentiated with respect to z*.
Timelike geodesic is slow if @%(t) < ¢, where i = 1,2,3 and t = 2°/c. Since

1 1
dr = E\/gul,jf'ujfudt = <1 + 0 <02>) dt,
the equation for slow geodesic takes the form

d?z* \ dat dz¥ (1)

dt? B g dt c

It follows from (18.2) that

1 . 19g2 1
th=0(5). T=-35mo(;).

and all other Christoffel’s symbols are of order O(1/c?). Putting

goo(x) = 2¢(2°, 7)

we see that up to the order O(1/¢) the geodesic equation becomes Newton’s
equation

Iy

or’

0
and the force acting on a particle is F' = —m—(p.

To find the potential ¢ we need to use Eirnstein equations. The energy-
momentum tensor of a macroscopic body which consists of slow moving particles
is given by

T = M (z)c*u"u”,

where M (x) is the mass density of the body and w* is a four-velocity vector.
If the macroscopic motion of the body is slow, we can put «® = 1 and u’ = 0,
i =1,2,3. Thus the energy-momentum tensor takes the form

TH = Mc*5460.

It follows from formula (17.7) in Lecture 17 that in the weak gravitational field
R = O(1/c?) and the only nontrivial contribution to Einstein equation (18.1)

is
Rg _ 4G T_ 47 M

ct 2

or: 1 1 1
o __ %00 A o2 L
Rv—mﬂ+0<§) §v¢+o(§)

Einstein equations for the weak gravitational field reduce to the Poisson equation

Since

V2 =4rM
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for the gravitational potential. Namely,
M(r")
o(r) = —G/ - T/|d3fr/

and in case M(r") = M§(r — r’) we obtain Newtonian potential

_GM
£

p(r) =

So that the force acting on a slow particle of mass m in a weak gravitational
force generated by a particle of a mass M is the Newtonian force!

18.3. Hilbert action

On the space .# of smooth Lorentzian metrics on the spacetime M consider
the celebrated Hilbert (or Hilbert-Einstein) functional

S(gu) = [ RV=ga.

where R is the scalar curvature of the metric ds* = g,,dz"dz” € #, and
\/—gd*z is the corresponding volume form on M. Here integration goes over a
domain D in M (usually bounded by two spacelike Cauchy hypersurfaces) and
it is assumed that all metrics in .# have the same boundary value on 0D. In
addition, normal derivatives of g,, on 0D are fixed.

ProroSITION 18.1. Let uy, = 6gu, be a tangent vector to A at a point
Guv € M and u = "*g"Puqp. Then the Gato derivative of the Hilbert func-
tional S in the direction u is given by

1
O0uS = / (R,W — 2gWR> uhv /=g dix.
D

Proor. Putting

55— 2L

- SEH(g;w + Eéguu)

e=0

we have
05 :/ (09" Ry + g" 6 Ry) v/—g d*x +/ Ré(v/—g)d*z.
D D

To compute R, (x) we use geodesic normal coordinates at z € M to obtain
ory, oIy,
Ox°  Oxv

OR,, =
Since 51";}1, is a (1,2) tensor, we get the formula

Ry = V1%, — V,0I7

po
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called Palatini identity. Since V,g"” = 0, we obtain from the Palatini identity
9" 0Ryu, = Vo (g""oI7,) — Vo (¢"0L7,),

so that
g"oR,, =V, W7, where W7 =g"oI'], — g"?dl7,,.
Since 9
F;,Ll/ = @ log(\/ _9)7
we obtain
OWH
[ 14 v
VW= Dk +1Iy,,W
1 0
= —— — WU/
= 9 (V—gW*)
Thus we have
y 1 0
(18.3) 9" Ry = ——= (V=g W").

To find §(1/—g), we use

99w _ p
ol ’
so that
89 iy Ny
69 = ﬁéguu =949 6.9“1/ = _gguuég
v

and we obtain
1
(18.4) 0(V=9) = =5V =9 909"

Substituting (18.3)—(18.4) into the formula for §S we obtain
1 0
08 = / R — —guwR | " /—gd*z +/ — (V=g WHd'x
D 2 D o+
1
= / <RMV - g;wR) UHV\/jgd4m'
D

2

Here we used the Stokes theorem and the condition that (5Fi‘w = 0 on 0D, which
follows from our assumptions on the space .# of Lorentzian metrics on M. [

REMARK. ‘Tautologically’ computing variation of the Hilbert-Einstein ac-
tion we obtain the relation

R _1g po_L JOW=gR) 9 dY—gR)
w g Tt T =g dghv dar IgM
oz
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REMARK. If one fixes only the values of metric tensor g,, on 0D then 45
will contain the boundary term. It is possible to add to the Hilbert-Einstein
functional S the so-called Gibbons-Hawking- York boundary term so that the §.5
is still given by Hilbert’s formula. This boundary term is the integral over 0D
of trace of the second fundamental form over the volume form of the induced
metric on 9D.

Denote
3

c
Sgravity = _W‘S’(Q)
The total action of the gravitational field in the presence of a matter with the
density function A(zx), depending only on g,, and its first derivatives, is given
by
S = Sgravity + Smattcra

where .
Smatter = - /A\/ —g d4l‘.

c
Defining symmetric stress-energy tensor by

2c 5Smatter _ 2 a( V _gA) _ i a( V _gA)
V=g dg /=g dghv dzr  OgM”
Ox

T =

from 65 = 0 we obtain Einstein equations

1 8rGG
RW - §g;wR = CT

When A depends only on g,,,, the formula for the stress-energy tensor sim-
plifies

Tw-

oA
Tl“’ = QW — gl“’A'
Thus for the electromagnetic field
1 1
A=———F,pF*f = - F,3F 59°7¢"°
167 ** T

and we obtain

1 N
Ty = o (—FMAFWg + 4gWFaBFOéB> .

Up to the factor 1/47 this is formula (11.2) in Lecture 11. For a macroscopic
body the energy-momentum tensor is

T;w = (p + E)uuuu — P9uv,

where p is the pressure and ¢ is the energy density of the body.

For a complete determination of the distribution and motion of the matter
one must add to Einstein equations equation of the state of the matter, that is,
equation relating the pressure density and temperature. This equation must be
given along with the Einstein equations.






LECTURE 19

Einstein equations — I1

19.1. Palatini formalism

In this approach to general relativity we consider the metric tensor g,, on
the space-time M and affine torsion-free connection I‘f;l, on T'M as independent
fields (due to the condition F/);V = F;\u there are 50 = 10 4 40 independent
functions). Consider the action

Sp = / 9" R/ —9g diz,
M
where R, is given by formula (17.7) in Lecture 21,
A A
R oy, ory
oy Oav

Its variation with respect to F;)V is still given by the Palatini identity

A o o A
+ Ful/ Ao FM}\FUV'

5R/LV = V>\ ((;F/)ly) - VV(5F2A)7

whereas variation of y/—g¢ is given by formula (18.4), in Lecture 22,

1
6(v=g) = —5V=9 909"

Indeed,
asT, 96T,
_ v B A o A o o A o A
5R,uu - G - B + 5Fuu Ao + F,ul/(sr)\a - 5F,u)\Fm/ - Ap(srol/
aoT?,, 96T
= K A T50T0, — T5,0T5, — 15,617 — —5-2> + T},0T%,

= VA(6T),) — V., (6T).

Denoting R = g"”R,,, and using Stokes’ theorem we obtain

5( _9)> 4
58 :/ (R L5g" + gsR,, + RO J=gd'z
BT et T V=g )V

1 v v
— /M (R;w — 2gWR> Sghvy/—gdiz + /M g" R —yg d*z

1 v
= /M ((RW — QQWR) Sg" + QX 5I‘;\w> V—gdz,

165



166 19. EINSTEIN EQUATIONS - II

where

v 1 a(\/ _ggl“/) vTo Lo W vo
Ql = - +g# F)\U - gl F/\a -9 Fl)ta

YTV o
_’_(SV 1 8(\/_99”0)
A\ V=g ox°

Thus equation §5p = 0 yileds

+ gpal“ﬁa> .

1
Ry — §gWR =0 and QY =0.
Using
aghv
oz

o/— 1
g = _5\/jgguu

Ox?
and definition of the covariant derivative,
aghv

V)\g"“’ = 8$/\ + F:‘)’\‘Ugﬂ'l/ + Fiagﬂav

we can rewrite equation Q" =0 as

1 1
(19-1) - = Vg™ + 59" 90, Vag™ + 65 (va’w - 29“"gapVagop> = 0.

Equation (19.1) has free indices A, p and v. Putting A = v and summing
over v gives

1 1
—VVQ’W + iguuga'qugUp + 4 (VJgMU - 2guago'pVago-p) - 0,

whence

1
V,g" = §g“ugng,,g”p.

Substituting this formula to (19.1) gives,
(19.2) Vg = %g“”gapVAg"” ~
Contracting (19.2) g, using g, g"" = 4 yields
9opVag°" =0,
and putting it back to (19.2) we finally obtain
Vg = 0.

This shows that V is the Levi-Civita connection. Thus in the Palatini formalism
equations (17.2) for the Christoffel’s symbols appear from the principle of the
least action.
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19.2. The Schwarzschild solution

For the case of static spherically symmetric metric in the empty space we
consider the following ansatz

ds® = goo(r)Pdt® — g1y (r)dr? — r?(d6? + sin®0 dp?),
where we are using spherical coordinates
x =rcosfcosp, y=ycoslsing, z=rcosdh.

It describes the gravitational field outside a spherical mass, on the assumption
that the electric charge of the mass and angular momentum of the mass are

all zero. Computing Ff)w where 20 = ct, 2! = r,2%2 = 0,23 = ¢, and solving
R,, = 0 we obtain
1
goo(r)=1——, g1 = T
o

where a is a constant. Thus

d 2

ds? = (1 _ 9) Ad> — T —2d0?,
r 1-2
T

where dQ? is the induced metric on S2 C R3. In the limit r — oo we should
have

1 1
I = N + ngiy +0 (CS> s

SO

. ac? 2MG
Joo = P 0

where M is the mass of a body creating gravitational field. By definition, the

quantity
_2MG

c2

a

is called Schwarzschild radius and is denoted by 7.
Thus the Schwarzschild metric is

r S

ds® = (1 — T—é) Adt? — dr®
1
r
and it is applicable for » > R, the radius of the body. At r = r5 we have
event horizon and r < ry describes the black hole, where the time coordinate ¢
becomes spacelike and the radial coordinate r becomes timelike. The singularity

at r = r, is apparent and can be eliminated by the change of coordinates, called
Gullstrand-Painlevé coordinates.

1For the Earth rs = 0.8.9 mm, while for the Sun rs = 3 km.






LECTURE 20

Kaluza-Klein theory

In the 1920s the only knows fundamental forces were electromagnetism and
the force of gravity, and the only known elementary particles were electron and
proton. Einstein’s idea of the unified field theory was to obtain electromagnetism
and general relativity from a single fundamental field. Toward this goal, T.
Kaluza (1921) and O. Klein (1926) proposed to consider the five-dimensional
space-time M = M x S}, where the fifth dimension in the circle of small radius

r= g ~107%m
c
— the Planck’s length ¢p. The coordinates on M will be denoted by z¢, a =
0,1,2,3,4, where #* = 0, so that using z*, p = 0, 1,2, 3, for coordinates on M
we have Z# = z#. Consider the following pseudo-Riemannian metric on M of
signature (4, —, —, —, —),

goo — AoAg  go1 — AoAr  goo — AoAs  gos — ApAs  Ag
gio — Ale g11 — A1 Ay gi2 — A1 Ay 913 — A1 A3 Ay
Gab = | g20 — A2A0 g21 — A Ay 922 — Az Ay 923 — A2A3 Ay
g30 — AsAg  g31 — AsAy gzp — AzAx g3z — AzAs  As
AO Al A2 A3 -1
so that
d3? = Gupdi3® = g, da*dz” — (A,dz" — df)>.

Also assume that the metric g,,dz"dz” and the 1-form A,dz* on M do not
depend on 6.
We have the following basic facts.

1) For § = det gop one has § = —g, where g = det g,,,,.

2) The inverse matrix §* is given by

gOO g01 g02 gOB A°
910 gl 1 gl2 913 Al
g20 g21 g22 923 A2

30 31 32 33 A3
A0 AL A2 A3 14 A Av
3) Under the change of coordinates z — z’ = F(x), 6 — 6+ A(z) we have

Ay = Al + 0, so that U(1)-gauge invariance is a relativity in the
fifth dimension!
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170 20. KALUZA-KLEIN THEORY

20.1. Geodesic equation on M

From formulas for Christoffel’s symbols we get for metric gqs:

1
Fgﬁ = Fgﬁ + igHU(AaFO’B + ABFoa)a

~ 1

FZZL = §gHUFlXU7

. 1 aAa 3A5
Fiﬁ = Aurgﬁ - 5 <AH(AaFﬁ[L +A5Fap‘) - W - 8x0‘> y
Il = fALFW,

~44 - 0

As usual, here
0Ag  0Aq
dx>  OxP’
For the free particle of mass m on the five-dimensional space-time M we
have the action

Fap =

/ / dz® dccb
=—mc | d§ = —mc Jab——=

ds d~

Using the formulas for Christoffel’s symbols fgc and putting u® = R we get
the following equations

dut

E +F“Buu = —g" A F,puuf — g" Foouu®, p=0,1,2,3,
and

du* 0A,

;{ + A, ﬁu uP = —AF  utut —|—A”AaFgUuau5 + Wu"uﬁ.

Multiplying first equations by A, and adding them to the second equation yields

du? dut 8Aa wof —
— — A, u’ =
ds a5 9zP "
so that
d( Au)=0
u® — .
ds
Thus u* — A, u* = £ is constant and the first equation takes the form

du

- + I} pu” u’ = —EgM Fou®
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Since 1 = g utu” + (ut — A,u”)? we have g utu’ =1— &2 ie.,

ds
20 _ /1 _¢2.
ds ¢
Whence

dzt L ds ut

s Vs e
and we obtain
no

2 L
d°z " & dz®

r T - ao
ds? tlap ds ds 1/1_529 ds

e
vVm2ct 4 e?

we see that the right hand side becomes

«
e e dx
oo
mec2 ds

Thus we get the equation of a free charged particle moving in external gravita-
tional and magnetic fields, obtained from the action

—mc/ds— Z/Auda?“.

This is the so-called first Kaluza miracle.

dx® M & dz®

Putting
g fr—

20.2. Hilbert action on M
By a direct and lengthy computation on gets

- 1
R=R+ FuF",

which is Kaluza’s second miracle. The pure gravity action on M is proportional
to the Hilbert action,

c3 -

Sy = — / R\/§d°%,
167G J m \/§

where G is the gravitational constant M. Putting G = 2mrG, replacing A, by

kA, where k = 2v/G/c?, and trivially integrating over S} we finally obtain

3

C 1
=— —F, F" ) /—gd*z.
Sn 167TG/M <R+167rc g > g

This is the desired unification of general relativity and electromagnetism. It
yields Einstein equations
1 81G

R/,LV - §guuR = CTT/,LV
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with the energy-momentum tensor of the electromagnetic field on M,

1
T;u/ = E (_FMAFVUQ)\U +

1

4gp,uFaﬂFaﬁ> ’

and Maxwell’s equations
V,F* =0

on M in the presence of the gravitation field g,,. Thus the Kaluze-Klein pure
gravity action in the five-dimensional space M naturally produces Einstein-
Hilbert-Maxwell action on the space-time M.

20.3. Criticism of the Kaluza-Klein theory

Though mathematically elegant, Kaluza-Klein theory gives unrealistic pre-
dictions for the masses of particles. Namely, consider the massless scalar field
®(x,0) on M satisfying the five-dimensional wave equation

82
(D4_802>©:07

where g,,,, is the Minkowski metric. Corresponding Fourier coeflicients

satisfy Klein-Gordon equations
(D4 +m2)p, =0

with masses

However, these masses are very large! Thus assuming that n = 1 gives electron,
the obtained mass would m. ~ 3-103° MeV, while the actual electron mass is
only 0.5 MeV.

Geometrically one can consider general Kaluza-Klein metrics

3 L, — DA A, DA
Gun(.0) = (g" a4, @ )

where ®(x,0) is a function on M, and consider the corresponding pure gravity
Hilbert action. However, even assuming that the metric g,;, does not depend
on 6, setting ® = 1 in the field equations is not the same as setting first & =1
and consider the resulting field equations, which unify general relativity and
electromagnetism. In other words, this unification is obtained considered a
special subvariety of metrics on M which have ® = 1.
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